Hypervirial Theorems for 1D Finite Systems: General Boundary Conditions

Autores
Fernández, Francisco Marcelo; Castro, Eduardo Alberto
Año de publicación
1987
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
The finite BC confront us with a problem no previously found in those cases studied in Part A. Let us suppose that ψi, ψj are two functions that obey the BC of the problem, so that they belong to DH. If ω is an arbitrary linear operator, then in general, ωψj. does not belong to DH.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Química
Hilbert Space
Extreme Point
Lower Index
Divergence Theorem
Real Operator
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/146388

id SEDICI_d11ca290f676b0d8bf0266a74def4bc0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/146388
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Hypervirial Theorems for 1D Finite Systems: General Boundary ConditionsFernández, Francisco MarceloCastro, Eduardo AlbertoQuímicaHilbert SpaceExtreme PointLower IndexDivergence TheoremReal OperatorThe finite BC confront us with a problem no previously found in those cases studied in Part A. Let us suppose that ψi, ψj are two functions that obey the BC of the problem, so that they belong to DH. If ω is an arbitrary linear operator, then in general, ωψj. does not belong to DH.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasSpringer1987info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionCapitulo de librohttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdf188-195http://sedici.unlp.edu.ar/handle/10915/146388enginfo:eu-repo/semantics/altIdentifier/isbn/978-3-642-93349-3info:eu-repo/semantics/altIdentifier/issn/0342-4901info:eu-repo/semantics/altIdentifier/issn/2192-6603info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-642-93349-3_9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:24:15Zoai:sedici.unlp.edu.ar:10915/146388Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:24:15.933SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Hypervirial Theorems for 1D Finite Systems: General Boundary Conditions
title Hypervirial Theorems for 1D Finite Systems: General Boundary Conditions
spellingShingle Hypervirial Theorems for 1D Finite Systems: General Boundary Conditions
Fernández, Francisco Marcelo
Química
Hilbert Space
Extreme Point
Lower Index
Divergence Theorem
Real Operator
title_short Hypervirial Theorems for 1D Finite Systems: General Boundary Conditions
title_full Hypervirial Theorems for 1D Finite Systems: General Boundary Conditions
title_fullStr Hypervirial Theorems for 1D Finite Systems: General Boundary Conditions
title_full_unstemmed Hypervirial Theorems for 1D Finite Systems: General Boundary Conditions
title_sort Hypervirial Theorems for 1D Finite Systems: General Boundary Conditions
dc.creator.none.fl_str_mv Fernández, Francisco Marcelo
Castro, Eduardo Alberto
author Fernández, Francisco Marcelo
author_facet Fernández, Francisco Marcelo
Castro, Eduardo Alberto
author_role author
author2 Castro, Eduardo Alberto
author2_role author
dc.subject.none.fl_str_mv Química
Hilbert Space
Extreme Point
Lower Index
Divergence Theorem
Real Operator
topic Química
Hilbert Space
Extreme Point
Lower Index
Divergence Theorem
Real Operator
dc.description.none.fl_txt_mv The finite BC confront us with a problem no previously found in those cases studied in Part A. Let us suppose that ψi, ψj are two functions that obey the BC of the problem, so that they belong to DH. If ω is an arbitrary linear operator, then in general, ωψj. does not belong to DH.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description The finite BC confront us with a problem no previously found in those cases studied in Part A. Let us suppose that ψi, ψj are two functions that obey the BC of the problem, so that they belong to DH. If ω is an arbitrary linear operator, then in general, ωψj. does not belong to DH.
publishDate 1987
dc.date.none.fl_str_mv 1987
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart
info:eu-repo/semantics/publishedVersion
Capitulo de libro
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
format bookPart
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/146388
url http://sedici.unlp.edu.ar/handle/10915/146388
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-3-642-93349-3
info:eu-repo/semantics/altIdentifier/issn/0342-4901
info:eu-repo/semantics/altIdentifier/issn/2192-6603
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-642-93349-3_9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
188-195
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064296641953792
score 13.22299