Lorentz-Shimogaki and Boyd Theorems for weighted Lorentz spaces

Autores
Agora, Elona; Antezana, Jorge Abel; Carro, María Jesús; Soria, Javier
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove the Lorentz-Shimogaki and Boyd theorems for the spaces Λpu(w). As a consequence, we give the complete characterization of the strong boundedness of H on these spaces in terms of some geometric conditions on the weights u and w, whenever p > 1. For these values of p, we also give the complete solution of the weak-type boundedness of the Hardy Littlewood operator on Λpu(w).
Fil: Agora, Elona. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina. Universidad de Barcelona; España
Fil: Antezana, Jorge Abel. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
Fil: Carro, María Jesús. Universidad de Barcelona; España
Fil: Soria, Javier. Universidad de Barcelona; España
Materia
BOYD INDICES
HILBERT TRANSFORM
HARDY-LITTLEWOOD MAXIMAL OPERATOR
LORENTZ SPACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/12164

id CONICETDig_5f6a29a4ebfcb25857c6826338732070
oai_identifier_str oai:ri.conicet.gov.ar:11336/12164
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lorentz-Shimogaki and Boyd Theorems for weighted Lorentz spacesAgora, ElonaAntezana, Jorge AbelCarro, María JesúsSoria, JavierBOYD INDICESHILBERT TRANSFORMHARDY-LITTLEWOOD MAXIMAL OPERATORLORENTZ SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove the Lorentz-Shimogaki and Boyd theorems for the spaces Λpu(w). As a consequence, we give the complete characterization of the strong boundedness of H on these spaces in terms of some geometric conditions on the weights u and w, whenever p > 1. For these values of p, we also give the complete solution of the weak-type boundedness of the Hardy Littlewood operator on Λpu(w).Fil: Agora, Elona. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina. Universidad de Barcelona; EspañaFil: Antezana, Jorge Abel. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; ArgentinaFil: Carro, María Jesús. Universidad de Barcelona; EspañaFil: Soria, Javier. Universidad de Barcelona; EspañaOxford University Press2014-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/12164Agora, Elona; Antezana, Jorge Abel; Carro, María Jesús; Soria, Javier; Lorentz-Shimogaki and Boyd Theorems for weighted Lorentz spaces; Oxford University Press; Journal Of The London Mathematical Society-second Series; 89; 2; 4-2014; 321-3360024-6107enginfo:eu-repo/semantics/altIdentifier/doi/10.1112/jlms/jdt063info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jlms/article-abstract/89/2/321/833025/Lorentz-Shimogaki-and-Boyd-theorems-for-weighted?redirectedFrom=fulltextinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:56Zoai:ri.conicet.gov.ar:11336/12164instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:56.947CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lorentz-Shimogaki and Boyd Theorems for weighted Lorentz spaces
title Lorentz-Shimogaki and Boyd Theorems for weighted Lorentz spaces
spellingShingle Lorentz-Shimogaki and Boyd Theorems for weighted Lorentz spaces
Agora, Elona
BOYD INDICES
HILBERT TRANSFORM
HARDY-LITTLEWOOD MAXIMAL OPERATOR
LORENTZ SPACES
title_short Lorentz-Shimogaki and Boyd Theorems for weighted Lorentz spaces
title_full Lorentz-Shimogaki and Boyd Theorems for weighted Lorentz spaces
title_fullStr Lorentz-Shimogaki and Boyd Theorems for weighted Lorentz spaces
title_full_unstemmed Lorentz-Shimogaki and Boyd Theorems for weighted Lorentz spaces
title_sort Lorentz-Shimogaki and Boyd Theorems for weighted Lorentz spaces
dc.creator.none.fl_str_mv Agora, Elona
Antezana, Jorge Abel
Carro, María Jesús
Soria, Javier
author Agora, Elona
author_facet Agora, Elona
Antezana, Jorge Abel
Carro, María Jesús
Soria, Javier
author_role author
author2 Antezana, Jorge Abel
Carro, María Jesús
Soria, Javier
author2_role author
author
author
dc.subject.none.fl_str_mv BOYD INDICES
HILBERT TRANSFORM
HARDY-LITTLEWOOD MAXIMAL OPERATOR
LORENTZ SPACES
topic BOYD INDICES
HILBERT TRANSFORM
HARDY-LITTLEWOOD MAXIMAL OPERATOR
LORENTZ SPACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove the Lorentz-Shimogaki and Boyd theorems for the spaces Λpu(w). As a consequence, we give the complete characterization of the strong boundedness of H on these spaces in terms of some geometric conditions on the weights u and w, whenever p > 1. For these values of p, we also give the complete solution of the weak-type boundedness of the Hardy Littlewood operator on Λpu(w).
Fil: Agora, Elona. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina. Universidad de Barcelona; España
Fil: Antezana, Jorge Abel. Universidad Nacional de la Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
Fil: Carro, María Jesús. Universidad de Barcelona; España
Fil: Soria, Javier. Universidad de Barcelona; España
description We prove the Lorentz-Shimogaki and Boyd theorems for the spaces Λpu(w). As a consequence, we give the complete characterization of the strong boundedness of H on these spaces in terms of some geometric conditions on the weights u and w, whenever p > 1. For these values of p, we also give the complete solution of the weak-type boundedness of the Hardy Littlewood operator on Λpu(w).
publishDate 2014
dc.date.none.fl_str_mv 2014-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/12164
Agora, Elona; Antezana, Jorge Abel; Carro, María Jesús; Soria, Javier; Lorentz-Shimogaki and Boyd Theorems for weighted Lorentz spaces; Oxford University Press; Journal Of The London Mathematical Society-second Series; 89; 2; 4-2014; 321-336
0024-6107
url http://hdl.handle.net/11336/12164
identifier_str_mv Agora, Elona; Antezana, Jorge Abel; Carro, María Jesús; Soria, Javier; Lorentz-Shimogaki and Boyd Theorems for weighted Lorentz spaces; Oxford University Press; Journal Of The London Mathematical Society-second Series; 89; 2; 4-2014; 321-336
0024-6107
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1112/jlms/jdt063
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/jlms/article-abstract/89/2/321/833025/Lorentz-Shimogaki-and-Boyd-theorems-for-weighted?redirectedFrom=fulltext
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269125305434112
score 13.13397