Hypervirial Theorems and Exact Solutions of the Schrödinger Equation
- Autores
- Fernández, Francisco Marcelo; Castro, Eduardo Alberto
- Año de publicación
- 1987
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- According to the postulates of quantum mechanics [1–5] the state of the system ψ(0) at t = 0 is related to the state of the system ψ (t) at any other time t through: ψ(t)=U(t)ψ(0) where U(t) Is an evolution operator. The reader interested In a rigorous mathematical treatment of the evolution operators and their properties is referred to Refs. 4 and 5. A comprehensive summary is given in Apendix I. It immediately follows from the properties of U(t) that ψ(0)=U+(t)ψ(t) where U† is the adjoint of U.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - Materia
-
Física
Química
Ciencias Exactas
Matrix Element
Recurrence Relation
Hamiltonian Operator
Hermitian Operator
Virial Theorem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/140106
Ver los metadatos del registro completo
id |
SEDICI_3f639e6edd81b33e18219d0640d324df |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/140106 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Hypervirial Theorems and Exact Solutions of the Schrödinger EquationFernández, Francisco MarceloCastro, Eduardo AlbertoFísicaQuímicaCiencias ExactasMatrix ElementRecurrence RelationHamiltonian OperatorHermitian OperatorVirial TheoremAccording to the postulates of quantum mechanics [1–5] the state of the system ψ(0) at t = 0 is related to the state of the system ψ (t) at any other time t through: ψ(t)=U(t)ψ(0) where U(t) Is an evolution operator. The reader interested In a rigorous mathematical treatment of the evolution operators and their properties is referred to Refs. 4 and 5. A comprehensive summary is given in Apendix I. It immediately follows from the properties of U(t) that ψ(0)=U+(t)ψ(t) where U† is the adjoint of U.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasSpringer1987info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionCapitulo de librohttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdf3-32http://sedici.unlp.edu.ar/handle/10915/140106enginfo:eu-repo/semantics/altIdentifier/isbn/978-3-642-93349-3info:eu-repo/semantics/altIdentifier/issn/0342-4901info:eu-repo/semantics/altIdentifier/issn/2192-6603info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-642-93349-3_2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:34:42Zoai:sedici.unlp.edu.ar:10915/140106Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:34:43.151SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Hypervirial Theorems and Exact Solutions of the Schrödinger Equation |
title |
Hypervirial Theorems and Exact Solutions of the Schrödinger Equation |
spellingShingle |
Hypervirial Theorems and Exact Solutions of the Schrödinger Equation Fernández, Francisco Marcelo Física Química Ciencias Exactas Matrix Element Recurrence Relation Hamiltonian Operator Hermitian Operator Virial Theorem |
title_short |
Hypervirial Theorems and Exact Solutions of the Schrödinger Equation |
title_full |
Hypervirial Theorems and Exact Solutions of the Schrödinger Equation |
title_fullStr |
Hypervirial Theorems and Exact Solutions of the Schrödinger Equation |
title_full_unstemmed |
Hypervirial Theorems and Exact Solutions of the Schrödinger Equation |
title_sort |
Hypervirial Theorems and Exact Solutions of the Schrödinger Equation |
dc.creator.none.fl_str_mv |
Fernández, Francisco Marcelo Castro, Eduardo Alberto |
author |
Fernández, Francisco Marcelo |
author_facet |
Fernández, Francisco Marcelo Castro, Eduardo Alberto |
author_role |
author |
author2 |
Castro, Eduardo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física Química Ciencias Exactas Matrix Element Recurrence Relation Hamiltonian Operator Hermitian Operator Virial Theorem |
topic |
Física Química Ciencias Exactas Matrix Element Recurrence Relation Hamiltonian Operator Hermitian Operator Virial Theorem |
dc.description.none.fl_txt_mv |
According to the postulates of quantum mechanics [1–5] the state of the system ψ(0) at t = 0 is related to the state of the system ψ (t) at any other time t through: ψ(t)=U(t)ψ(0) where U(t) Is an evolution operator. The reader interested In a rigorous mathematical treatment of the evolution operators and their properties is referred to Refs. 4 and 5. A comprehensive summary is given in Apendix I. It immediately follows from the properties of U(t) that ψ(0)=U+(t)ψ(t) where U† is the adjoint of U. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
description |
According to the postulates of quantum mechanics [1–5] the state of the system ψ(0) at t = 0 is related to the state of the system ψ (t) at any other time t through: ψ(t)=U(t)ψ(0) where U(t) Is an evolution operator. The reader interested In a rigorous mathematical treatment of the evolution operators and their properties is referred to Refs. 4 and 5. A comprehensive summary is given in Apendix I. It immediately follows from the properties of U(t) that ψ(0)=U+(t)ψ(t) where U† is the adjoint of U. |
publishDate |
1987 |
dc.date.none.fl_str_mv |
1987 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bookPart info:eu-repo/semantics/publishedVersion Capitulo de libro http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/140106 |
url |
http://sedici.unlp.edu.ar/handle/10915/140106 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-3-642-93349-3 info:eu-repo/semantics/altIdentifier/issn/0342-4901 info:eu-repo/semantics/altIdentifier/issn/2192-6603 info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-642-93349-3_2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 3-32 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904481296023552 |
score |
12.993085 |