Hypervirial Theorems and Exact Solutions of the Schrödinger Equation

Autores
Fernández, Francisco Marcelo; Castro, Eduardo Alberto
Año de publicación
1987
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
According to the postulates of quantum mechanics [1–5] the state of the system ψ(0) at t = 0 is related to the state of the system ψ (t) at any other time t through: ψ(t)=U(t)ψ(0) where U(t) Is an evolution operator. The reader interested In a rigorous mathematical treatment of the evolution operators and their properties is referred to Refs. 4 and 5. A comprehensive summary is given in Apendix I. It immediately follows from the properties of U(t) that ψ(0)=U+(t)ψ(t) where U† is the adjoint of U.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Física
Química
Ciencias Exactas
Matrix Element
Recurrence Relation
Hamiltonian Operator
Hermitian Operator
Virial Theorem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/140106

id SEDICI_3f639e6edd81b33e18219d0640d324df
oai_identifier_str oai:sedici.unlp.edu.ar:10915/140106
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Hypervirial Theorems and Exact Solutions of the Schrödinger EquationFernández, Francisco MarceloCastro, Eduardo AlbertoFísicaQuímicaCiencias ExactasMatrix ElementRecurrence RelationHamiltonian OperatorHermitian OperatorVirial TheoremAccording to the postulates of quantum mechanics [1–5] the state of the system ψ(0) at t = 0 is related to the state of the system ψ (t) at any other time t through: ψ(t)=U(t)ψ(0) where U(t) Is an evolution operator. The reader interested In a rigorous mathematical treatment of the evolution operators and their properties is referred to Refs. 4 and 5. A comprehensive summary is given in Apendix I. It immediately follows from the properties of U(t) that ψ(0)=U+(t)ψ(t) where U† is the adjoint of U.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasSpringer1987info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionCapitulo de librohttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdf3-32http://sedici.unlp.edu.ar/handle/10915/140106enginfo:eu-repo/semantics/altIdentifier/isbn/978-3-642-93349-3info:eu-repo/semantics/altIdentifier/issn/0342-4901info:eu-repo/semantics/altIdentifier/issn/2192-6603info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-642-93349-3_2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:34:42Zoai:sedici.unlp.edu.ar:10915/140106Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:34:43.151SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Hypervirial Theorems and Exact Solutions of the Schrödinger Equation
title Hypervirial Theorems and Exact Solutions of the Schrödinger Equation
spellingShingle Hypervirial Theorems and Exact Solutions of the Schrödinger Equation
Fernández, Francisco Marcelo
Física
Química
Ciencias Exactas
Matrix Element
Recurrence Relation
Hamiltonian Operator
Hermitian Operator
Virial Theorem
title_short Hypervirial Theorems and Exact Solutions of the Schrödinger Equation
title_full Hypervirial Theorems and Exact Solutions of the Schrödinger Equation
title_fullStr Hypervirial Theorems and Exact Solutions of the Schrödinger Equation
title_full_unstemmed Hypervirial Theorems and Exact Solutions of the Schrödinger Equation
title_sort Hypervirial Theorems and Exact Solutions of the Schrödinger Equation
dc.creator.none.fl_str_mv Fernández, Francisco Marcelo
Castro, Eduardo Alberto
author Fernández, Francisco Marcelo
author_facet Fernández, Francisco Marcelo
Castro, Eduardo Alberto
author_role author
author2 Castro, Eduardo Alberto
author2_role author
dc.subject.none.fl_str_mv Física
Química
Ciencias Exactas
Matrix Element
Recurrence Relation
Hamiltonian Operator
Hermitian Operator
Virial Theorem
topic Física
Química
Ciencias Exactas
Matrix Element
Recurrence Relation
Hamiltonian Operator
Hermitian Operator
Virial Theorem
dc.description.none.fl_txt_mv According to the postulates of quantum mechanics [1–5] the state of the system ψ(0) at t = 0 is related to the state of the system ψ (t) at any other time t through: ψ(t)=U(t)ψ(0) where U(t) Is an evolution operator. The reader interested In a rigorous mathematical treatment of the evolution operators and their properties is referred to Refs. 4 and 5. A comprehensive summary is given in Apendix I. It immediately follows from the properties of U(t) that ψ(0)=U+(t)ψ(t) where U† is the adjoint of U.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description According to the postulates of quantum mechanics [1–5] the state of the system ψ(0) at t = 0 is related to the state of the system ψ (t) at any other time t through: ψ(t)=U(t)ψ(0) where U(t) Is an evolution operator. The reader interested In a rigorous mathematical treatment of the evolution operators and their properties is referred to Refs. 4 and 5. A comprehensive summary is given in Apendix I. It immediately follows from the properties of U(t) that ψ(0)=U+(t)ψ(t) where U† is the adjoint of U.
publishDate 1987
dc.date.none.fl_str_mv 1987
dc.type.none.fl_str_mv info:eu-repo/semantics/bookPart
info:eu-repo/semantics/publishedVersion
Capitulo de libro
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
format bookPart
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/140106
url http://sedici.unlp.edu.ar/handle/10915/140106
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-3-642-93349-3
info:eu-repo/semantics/altIdentifier/issn/0342-4901
info:eu-repo/semantics/altIdentifier/issn/2192-6603
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-642-93349-3_2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
3-32
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842904481296023552
score 12.993085