B1-EPG graphs are 4-clique colorable

Autores
Bonomo, Flavia; Mazzoleni, María Pía; Stein, Maya
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this work we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it.
Facultad de Ciencias Exactas
Materia
Matemática
clique coloring, edge intersection graphs, paths on grids, polynomial time algorithm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/79817

id SEDICI_ccb981b8336c7bcf2ab05a7063c0b7a8
oai_identifier_str oai:sedici.unlp.edu.ar:10915/79817
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling B1-EPG graphs are 4-clique colorableBonomo, FlaviaMazzoleni, María PíaStein, MayaMatemáticaclique coloring, edge intersection graphs, paths on grids, polynomial time algorithmWe consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this work we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it.Facultad de Ciencias Exactas2017info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf166-168http://sedici.unlp.edu.ar/handle/10915/79817enginfo:eu-repo/semantics/altIdentifier/issn/2314-3282info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:14:37Zoai:sedici.unlp.edu.ar:10915/79817Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:14:37.453SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv B1-EPG graphs are 4-clique colorable
title B1-EPG graphs are 4-clique colorable
spellingShingle B1-EPG graphs are 4-clique colorable
Bonomo, Flavia
Matemática
clique coloring, edge intersection graphs, paths on grids, polynomial time algorithm
title_short B1-EPG graphs are 4-clique colorable
title_full B1-EPG graphs are 4-clique colorable
title_fullStr B1-EPG graphs are 4-clique colorable
title_full_unstemmed B1-EPG graphs are 4-clique colorable
title_sort B1-EPG graphs are 4-clique colorable
dc.creator.none.fl_str_mv Bonomo, Flavia
Mazzoleni, María Pía
Stein, Maya
author Bonomo, Flavia
author_facet Bonomo, Flavia
Mazzoleni, María Pía
Stein, Maya
author_role author
author2 Mazzoleni, María Pía
Stein, Maya
author2_role author
author
dc.subject.none.fl_str_mv Matemática
clique coloring, edge intersection graphs, paths on grids, polynomial time algorithm
topic Matemática
clique coloring, edge intersection graphs, paths on grids, polynomial time algorithm
dc.description.none.fl_txt_mv We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this work we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it.
Facultad de Ciencias Exactas
description We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this work we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/79817
url http://sedici.unlp.edu.ar/handle/10915/79817
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2314-3282
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
166-168
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616017394794496
score 13.070432