B1-EPG graphs are 4-clique colorable
- Autores
- Bonomo, Flavia; Mazzoleni, María Pía; Stein, Maya
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this work we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it.
Facultad de Ciencias Exactas - Materia
-
Matemática
clique coloring, edge intersection graphs, paths on grids, polynomial time algorithm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/79817
Ver los metadatos del registro completo
id |
SEDICI_ccb981b8336c7bcf2ab05a7063c0b7a8 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/79817 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
B1-EPG graphs are 4-clique colorableBonomo, FlaviaMazzoleni, María PíaStein, MayaMatemáticaclique coloring, edge intersection graphs, paths on grids, polynomial time algorithmWe consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this work we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it.Facultad de Ciencias Exactas2017info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf166-168http://sedici.unlp.edu.ar/handle/10915/79817enginfo:eu-repo/semantics/altIdentifier/issn/2314-3282info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:14:37Zoai:sedici.unlp.edu.ar:10915/79817Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:14:37.453SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
B1-EPG graphs are 4-clique colorable |
title |
B1-EPG graphs are 4-clique colorable |
spellingShingle |
B1-EPG graphs are 4-clique colorable Bonomo, Flavia Matemática clique coloring, edge intersection graphs, paths on grids, polynomial time algorithm |
title_short |
B1-EPG graphs are 4-clique colorable |
title_full |
B1-EPG graphs are 4-clique colorable |
title_fullStr |
B1-EPG graphs are 4-clique colorable |
title_full_unstemmed |
B1-EPG graphs are 4-clique colorable |
title_sort |
B1-EPG graphs are 4-clique colorable |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Mazzoleni, María Pía Stein, Maya |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Mazzoleni, María Pía Stein, Maya |
author_role |
author |
author2 |
Mazzoleni, María Pía Stein, Maya |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Matemática clique coloring, edge intersection graphs, paths on grids, polynomial time algorithm |
topic |
Matemática clique coloring, edge intersection graphs, paths on grids, polynomial time algorithm |
dc.description.none.fl_txt_mv |
We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this work we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it. Facultad de Ciencias Exactas |
description |
We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this work we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/79817 |
url |
http://sedici.unlp.edu.ar/handle/10915/79817 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2314-3282 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 166-168 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616017394794496 |
score |
13.070432 |