A note on Helly-B1-EPG graphs
- Autores
- Alcón, Liliana Graciela; Mazzoleni, María Pía; Dias Dos Santos, Tanilson
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Edge intersection graphs of paths on a grid (EPG graphs) aregraphs whose vertices can be represented as nontrivial paths on agrid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. When the paths haveat most one change of direction (bend) these graphs are called B1-EPG graphs. In this paper, we delimit some subclasses of B1-EPGgraphs that admit a Helly-B1-EPG representation. It is known thatB1-EPG and Helly-B1-EPG are hereditary classes, so they can becharacterized by forbidden structures. In both cases, finding thewhole list of minimal forbidden induced subgraphs are challengingopen problems. Taking a step towards solving those problems, wedescribe a few structures at least one of which will necessarily bepresent in any B1-EPG graph that does not admit a Helly representation. In addition, we show that the well known families of Blockgraphs, Cactus and Line of Bipartite graphs are totally contained inthe class Helly-B1-EPG.
Fil: Alcón, Liliana Graciela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Mazzoleni, María Pía. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Dias Dos Santos, Tanilson. Universidade Federal do Rio de Janeiro; Brasil - Materia
-
EDGE- INYTERSECTION GRAPHS OF PATHS ON A GRID
HELLY PROPERTY
SINGLE BEND PATHS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/160294
Ver los metadatos del registro completo
id |
CONICETDig_2ea7693d359b6d8bbd64a113267fcb47 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/160294 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A note on Helly-B1-EPG graphsAlcón, Liliana GracielaMazzoleni, María PíaDias Dos Santos, TanilsonEDGE- INYTERSECTION GRAPHS OF PATHS ON A GRIDHELLY PROPERTYSINGLE BEND PATHShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Edge intersection graphs of paths on a grid (EPG graphs) aregraphs whose vertices can be represented as nontrivial paths on agrid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. When the paths haveat most one change of direction (bend) these graphs are called B1-EPG graphs. In this paper, we delimit some subclasses of B1-EPGgraphs that admit a Helly-B1-EPG representation. It is known thatB1-EPG and Helly-B1-EPG are hereditary classes, so they can becharacterized by forbidden structures. In both cases, finding thewhole list of minimal forbidden induced subgraphs are challengingopen problems. Taking a step towards solving those problems, wedescribe a few structures at least one of which will necessarily bepresent in any B1-EPG graph that does not admit a Helly representation. In addition, we show that the well known families of Blockgraphs, Cactus and Line of Bipartite graphs are totally contained inthe class Helly-B1-EPG.Fil: Alcón, Liliana Graciela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Mazzoleni, María Pía. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Dias Dos Santos, Tanilson. Universidade Federal do Rio de Janeiro; BrasilSociedad Brasilera de Matemàtica2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/160294Alcón, Liliana Graciela; Mazzoleni, María Pía; Dias Dos Santos, Tanilson; A note on Helly-B1-EPG graphs; Sociedad Brasilera de Matemàtica; Matemática Contemporânea; 48; 10-2021; 22-300103-9059CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.21711/231766362021/rmc483info:eu-repo/semantics/altIdentifier/url/https://mc.sbm.org.br/wp-content/uploads/sites/9/sites/9/2022/01/Article-03-vol-48.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:15Zoai:ri.conicet.gov.ar:11336/160294instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:16.261CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A note on Helly-B1-EPG graphs |
title |
A note on Helly-B1-EPG graphs |
spellingShingle |
A note on Helly-B1-EPG graphs Alcón, Liliana Graciela EDGE- INYTERSECTION GRAPHS OF PATHS ON A GRID HELLY PROPERTY SINGLE BEND PATHS |
title_short |
A note on Helly-B1-EPG graphs |
title_full |
A note on Helly-B1-EPG graphs |
title_fullStr |
A note on Helly-B1-EPG graphs |
title_full_unstemmed |
A note on Helly-B1-EPG graphs |
title_sort |
A note on Helly-B1-EPG graphs |
dc.creator.none.fl_str_mv |
Alcón, Liliana Graciela Mazzoleni, María Pía Dias Dos Santos, Tanilson |
author |
Alcón, Liliana Graciela |
author_facet |
Alcón, Liliana Graciela Mazzoleni, María Pía Dias Dos Santos, Tanilson |
author_role |
author |
author2 |
Mazzoleni, María Pía Dias Dos Santos, Tanilson |
author2_role |
author author |
dc.subject.none.fl_str_mv |
EDGE- INYTERSECTION GRAPHS OF PATHS ON A GRID HELLY PROPERTY SINGLE BEND PATHS |
topic |
EDGE- INYTERSECTION GRAPHS OF PATHS ON A GRID HELLY PROPERTY SINGLE BEND PATHS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Edge intersection graphs of paths on a grid (EPG graphs) aregraphs whose vertices can be represented as nontrivial paths on agrid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. When the paths haveat most one change of direction (bend) these graphs are called B1-EPG graphs. In this paper, we delimit some subclasses of B1-EPGgraphs that admit a Helly-B1-EPG representation. It is known thatB1-EPG and Helly-B1-EPG are hereditary classes, so they can becharacterized by forbidden structures. In both cases, finding thewhole list of minimal forbidden induced subgraphs are challengingopen problems. Taking a step towards solving those problems, wedescribe a few structures at least one of which will necessarily bepresent in any B1-EPG graph that does not admit a Helly representation. In addition, we show that the well known families of Blockgraphs, Cactus and Line of Bipartite graphs are totally contained inthe class Helly-B1-EPG. Fil: Alcón, Liliana Graciela. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Mazzoleni, María Pía. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Dias Dos Santos, Tanilson. Universidade Federal do Rio de Janeiro; Brasil |
description |
Edge intersection graphs of paths on a grid (EPG graphs) aregraphs whose vertices can be represented as nontrivial paths on agrid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid. When the paths haveat most one change of direction (bend) these graphs are called B1-EPG graphs. In this paper, we delimit some subclasses of B1-EPGgraphs that admit a Helly-B1-EPG representation. It is known thatB1-EPG and Helly-B1-EPG are hereditary classes, so they can becharacterized by forbidden structures. In both cases, finding thewhole list of minimal forbidden induced subgraphs are challengingopen problems. Taking a step towards solving those problems, wedescribe a few structures at least one of which will necessarily bepresent in any B1-EPG graph that does not admit a Helly representation. In addition, we show that the well known families of Blockgraphs, Cactus and Line of Bipartite graphs are totally contained inthe class Helly-B1-EPG. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/160294 Alcón, Liliana Graciela; Mazzoleni, María Pía; Dias Dos Santos, Tanilson; A note on Helly-B1-EPG graphs; Sociedad Brasilera de Matemàtica; Matemática Contemporânea; 48; 10-2021; 22-30 0103-9059 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/160294 |
identifier_str_mv |
Alcón, Liliana Graciela; Mazzoleni, María Pía; Dias Dos Santos, Tanilson; A note on Helly-B1-EPG graphs; Sociedad Brasilera de Matemàtica; Matemática Contemporânea; 48; 10-2021; 22-30 0103-9059 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.21711/231766362021/rmc483 info:eu-repo/semantics/altIdentifier/url/https://mc.sbm.org.br/wp-content/uploads/sites/9/sites/9/2022/01/Article-03-vol-48.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sociedad Brasilera de Matemàtica |
publisher.none.fl_str_mv |
Sociedad Brasilera de Matemàtica |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613332126924800 |
score |
13.070432 |