Clique coloring B1-EPG graphs
- Autores
- Bonomo, Flavia; Mazzoleni, María Pía; Stein, Maya
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this paper we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it.
Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Mazzoleni, María Pía. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: Stein, Maya. Universidad de Chile; Chile - Materia
-
CLIQUE COLORING
EDGE INTERSECTION GRAPHS
PATHS ON GRIDS
POLYNOMIAL TIME ALGORITHM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/56526
Ver los metadatos del registro completo
id |
CONICETDig_d34ba7bd5dd0e07f0e9538ffe3103a59 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/56526 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Clique coloring B1-EPG graphsBonomo, FlaviaMazzoleni, María PíaStein, MayaCLIQUE COLORINGEDGE INTERSECTION GRAPHSPATHS ON GRIDSPOLYNOMIAL TIME ALGORITHMhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this paper we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Mazzoleni, María Pía. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: Stein, Maya. Universidad de Chile; ChileElsevier Science2017-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56526Bonomo, Flavia; Mazzoleni, María Pía; Stein, Maya; Clique coloring B1-EPG graphs; Elsevier Science; Discrete Mathematics; 340; 5; 5-2017; 1008-10110012-365XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2017.01.019info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012365X17300298info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:34Zoai:ri.conicet.gov.ar:11336/56526instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:34.411CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Clique coloring B1-EPG graphs |
title |
Clique coloring B1-EPG graphs |
spellingShingle |
Clique coloring B1-EPG graphs Bonomo, Flavia CLIQUE COLORING EDGE INTERSECTION GRAPHS PATHS ON GRIDS POLYNOMIAL TIME ALGORITHM |
title_short |
Clique coloring B1-EPG graphs |
title_full |
Clique coloring B1-EPG graphs |
title_fullStr |
Clique coloring B1-EPG graphs |
title_full_unstemmed |
Clique coloring B1-EPG graphs |
title_sort |
Clique coloring B1-EPG graphs |
dc.creator.none.fl_str_mv |
Bonomo, Flavia Mazzoleni, María Pía Stein, Maya |
author |
Bonomo, Flavia |
author_facet |
Bonomo, Flavia Mazzoleni, María Pía Stein, Maya |
author_role |
author |
author2 |
Mazzoleni, María Pía Stein, Maya |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CLIQUE COLORING EDGE INTERSECTION GRAPHS PATHS ON GRIDS POLYNOMIAL TIME ALGORITHM |
topic |
CLIQUE COLORING EDGE INTERSECTION GRAPHS PATHS ON GRIDS POLYNOMIAL TIME ALGORITHM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this paper we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it. Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Mazzoleni, María Pía. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: Stein, Maya. Universidad de Chile; Chile |
description |
We consider the problem of clique coloring, that is, coloring the vertices of a given graph such that no (maximal) clique of size at least two is monocolored. It is known that interval graphs are 2-clique colorable. In this paper we prove that B1-EPG graphs (edge intersection graphs of paths on a grid, where each path has at most one bend) are 4-clique colorable. Moreover, given a B1-EPG representation of a graph, we provide a linear time algorithm that constructs a 4-clique coloring of it. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/56526 Bonomo, Flavia; Mazzoleni, María Pía; Stein, Maya; Clique coloring B1-EPG graphs; Elsevier Science; Discrete Mathematics; 340; 5; 5-2017; 1008-1011 0012-365X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/56526 |
identifier_str_mv |
Bonomo, Flavia; Mazzoleni, María Pía; Stein, Maya; Clique coloring B1-EPG graphs; Elsevier Science; Discrete Mathematics; 340; 5; 5-2017; 1008-1011 0012-365X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.disc.2017.01.019 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0012365X17300298 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613148211937280 |
score |
13.070432 |