Image Feature Extraction for Similarity Searching Using Transfer Learning with ResNet

Autores
Pascal, Andrés; Planas, Adrián; Vidal, Zoe Florencia; Bonti, Agustina; Tonelotto, Lucas; Castiglioni, León
Año de publicación
2024
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This study evaluates the use of feature extraction with a pre-trained ResNet50 model for similarity search tasks. We employed transfer learning from both initial and intermediate layers of ResNet50 and applied a robust preprocessing approach, including resizing and Gaussian blur, to optimize feature extraction. The method achieved over 90% accuracy in nearest neighbor (NN) and k-Nearest Neighbors (k=3 and k=5) searches for both logos and paintings datasets. Notably, our approach does not require fine-tuning, which is advantageous when only one instance of each element is available. Overall, the method is effective and practical for similarity search applications.
Red de Universidades con Carreras en Informática
Materia
Ciencias Informáticas
Image Similarity Search
Feature Extraction
CNNs
Transfer Learning
Logos
Paintings
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/176283

id SEDICI_c7200749de5cb328b8a3e0411f9a8de7
oai_identifier_str oai:sedici.unlp.edu.ar:10915/176283
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Image Feature Extraction for Similarity Searching Using Transfer Learning with ResNetPascal, AndrésPlanas, AdriánVidal, Zoe FlorenciaBonti, AgustinaTonelotto, LucasCastiglioni, LeónCiencias InformáticasImage Similarity SearchFeature ExtractionCNNsTransfer LearningLogosPaintingsThis study evaluates the use of feature extraction with a pre-trained ResNet50 model for similarity search tasks. We employed transfer learning from both initial and intermediate layers of ResNet50 and applied a robust preprocessing approach, including resizing and Gaussian blur, to optimize feature extraction. The method achieved over 90% accuracy in nearest neighbor (NN) and k-Nearest Neighbors (k=3 and k=5) searches for both logos and paintings datasets. Notably, our approach does not require fine-tuning, which is advantageous when only one instance of each element is available. Overall, the method is effective and practical for similarity search applications.Red de Universidades con Carreras en Informática2024-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf82-93http://sedici.unlp.edu.ar/handle/10915/176283enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2428-5info:eu-repo/semantics/reference/hdl/10915/172755info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:47:28Zoai:sedici.unlp.edu.ar:10915/176283Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:47:28.755SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Image Feature Extraction for Similarity Searching Using Transfer Learning with ResNet
title Image Feature Extraction for Similarity Searching Using Transfer Learning with ResNet
spellingShingle Image Feature Extraction for Similarity Searching Using Transfer Learning with ResNet
Pascal, Andrés
Ciencias Informáticas
Image Similarity Search
Feature Extraction
CNNs
Transfer Learning
Logos
Paintings
title_short Image Feature Extraction for Similarity Searching Using Transfer Learning with ResNet
title_full Image Feature Extraction for Similarity Searching Using Transfer Learning with ResNet
title_fullStr Image Feature Extraction for Similarity Searching Using Transfer Learning with ResNet
title_full_unstemmed Image Feature Extraction for Similarity Searching Using Transfer Learning with ResNet
title_sort Image Feature Extraction for Similarity Searching Using Transfer Learning with ResNet
dc.creator.none.fl_str_mv Pascal, Andrés
Planas, Adrián
Vidal, Zoe Florencia
Bonti, Agustina
Tonelotto, Lucas
Castiglioni, León
author Pascal, Andrés
author_facet Pascal, Andrés
Planas, Adrián
Vidal, Zoe Florencia
Bonti, Agustina
Tonelotto, Lucas
Castiglioni, León
author_role author
author2 Planas, Adrián
Vidal, Zoe Florencia
Bonti, Agustina
Tonelotto, Lucas
Castiglioni, León
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Image Similarity Search
Feature Extraction
CNNs
Transfer Learning
Logos
Paintings
topic Ciencias Informáticas
Image Similarity Search
Feature Extraction
CNNs
Transfer Learning
Logos
Paintings
dc.description.none.fl_txt_mv This study evaluates the use of feature extraction with a pre-trained ResNet50 model for similarity search tasks. We employed transfer learning from both initial and intermediate layers of ResNet50 and applied a robust preprocessing approach, including resizing and Gaussian blur, to optimize feature extraction. The method achieved over 90% accuracy in nearest neighbor (NN) and k-Nearest Neighbors (k=3 and k=5) searches for both logos and paintings datasets. Notably, our approach does not require fine-tuning, which is advantageous when only one instance of each element is available. Overall, the method is effective and practical for similarity search applications.
Red de Universidades con Carreras en Informática
description This study evaluates the use of feature extraction with a pre-trained ResNet50 model for similarity search tasks. We employed transfer learning from both initial and intermediate layers of ResNet50 and applied a robust preprocessing approach, including resizing and Gaussian blur, to optimize feature extraction. The method achieved over 90% accuracy in nearest neighbor (NN) and k-Nearest Neighbors (k=3 and k=5) searches for both logos and paintings datasets. Notably, our approach does not require fine-tuning, which is advantageous when only one instance of each element is available. Overall, the method is effective and practical for similarity search applications.
publishDate 2024
dc.date.none.fl_str_mv 2024-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/176283
url http://sedici.unlp.edu.ar/handle/10915/176283
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2428-5
info:eu-repo/semantics/reference/hdl/10915/172755
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
82-93
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616338260099072
score 13.070432