A hybrid approach to boost the permutation index for similarity searching

Autores
Figueroa, Karina; Camarena Ibarrola, Antonio; Reyes, Nora Susana; Paredes, Rodrigo; Hernandez Martinez, Braulio Ramses
Año de publicación
2022
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
We propose a hybrid strategy that combines three ideas, namely, a convenient way for reducing the length of the permutations, using a permutation similarity measure adjusted for these clipped permutations, and the use of the closest permutant of each object as a pivot for it. In this way, we increase the discriminability of the permutation index in order to reduce even more the number of distance computations without reducing the answer quality. The performance of our proposal is tested using two classical real-world databases: NASA and Colors which are part of the SISAP project’s metric space benchmark. We reduced more than 30% of the number of distance evaluations needed to solve the queries on both databases.
XIX Workshop Base de Datos y Minería de Datos (WBDMD)
Red de Universidades con Carreras en Informática
Materia
Ciencias Informáticas
Similariy search
Permutant-based index
Permutation similarity measures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/149649

id SEDICI_962fb266c9e0e2fb1360596213fa2bbd
oai_identifier_str oai:sedici.unlp.edu.ar:10915/149649
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A hybrid approach to boost the permutation index for similarity searchingFigueroa, KarinaCamarena Ibarrola, AntonioReyes, Nora SusanaParedes, RodrigoHernandez Martinez, Braulio RamsesCiencias InformáticasSimilariy searchPermutant-based indexPermutation similarity measuresWe propose a hybrid strategy that combines three ideas, namely, a convenient way for reducing the length of the permutations, using a permutation similarity measure adjusted for these clipped permutations, and the use of the closest permutant of each object as a pivot for it. In this way, we increase the discriminability of the permutation index in order to reduce even more the number of distance computations without reducing the answer quality. The performance of our proposal is tested using two classical real-world databases: NASA and Colors which are part of the SISAP project’s metric space benchmark. We reduced more than 30% of the number of distance evaluations needed to solve the queries on both databases.XIX Workshop Base de Datos y Minería de Datos (WBDMD)Red de Universidades con Carreras en Informática2022-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf458-467http://sedici.unlp.edu.ar/handle/10915/149649enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-1364-31-2info:eu-repo/semantics/reference/hdl/10915/149102info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:38:22Zoai:sedici.unlp.edu.ar:10915/149649Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:38:23.16SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A hybrid approach to boost the permutation index for similarity searching
title A hybrid approach to boost the permutation index for similarity searching
spellingShingle A hybrid approach to boost the permutation index for similarity searching
Figueroa, Karina
Ciencias Informáticas
Similariy search
Permutant-based index
Permutation similarity measures
title_short A hybrid approach to boost the permutation index for similarity searching
title_full A hybrid approach to boost the permutation index for similarity searching
title_fullStr A hybrid approach to boost the permutation index for similarity searching
title_full_unstemmed A hybrid approach to boost the permutation index for similarity searching
title_sort A hybrid approach to boost the permutation index for similarity searching
dc.creator.none.fl_str_mv Figueroa, Karina
Camarena Ibarrola, Antonio
Reyes, Nora Susana
Paredes, Rodrigo
Hernandez Martinez, Braulio Ramses
author Figueroa, Karina
author_facet Figueroa, Karina
Camarena Ibarrola, Antonio
Reyes, Nora Susana
Paredes, Rodrigo
Hernandez Martinez, Braulio Ramses
author_role author
author2 Camarena Ibarrola, Antonio
Reyes, Nora Susana
Paredes, Rodrigo
Hernandez Martinez, Braulio Ramses
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Similariy search
Permutant-based index
Permutation similarity measures
topic Ciencias Informáticas
Similariy search
Permutant-based index
Permutation similarity measures
dc.description.none.fl_txt_mv We propose a hybrid strategy that combines three ideas, namely, a convenient way for reducing the length of the permutations, using a permutation similarity measure adjusted for these clipped permutations, and the use of the closest permutant of each object as a pivot for it. In this way, we increase the discriminability of the permutation index in order to reduce even more the number of distance computations without reducing the answer quality. The performance of our proposal is tested using two classical real-world databases: NASA and Colors which are part of the SISAP project’s metric space benchmark. We reduced more than 30% of the number of distance evaluations needed to solve the queries on both databases.
XIX Workshop Base de Datos y Minería de Datos (WBDMD)
Red de Universidades con Carreras en Informática
description We propose a hybrid strategy that combines three ideas, namely, a convenient way for reducing the length of the permutations, using a permutation similarity measure adjusted for these clipped permutations, and the use of the closest permutant of each object as a pivot for it. In this way, we increase the discriminability of the permutation index in order to reduce even more the number of distance computations without reducing the answer quality. The performance of our proposal is tested using two classical real-world databases: NASA and Colors which are part of the SISAP project’s metric space benchmark. We reduced more than 30% of the number of distance evaluations needed to solve the queries on both databases.
publishDate 2022
dc.date.none.fl_str_mv 2022-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/149649
url http://sedici.unlp.edu.ar/handle/10915/149649
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-1364-31-2
info:eu-repo/semantics/reference/hdl/10915/149102
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
458-467
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616259352657920
score 13.070432