Quantization of moisture content in yerba mate leaves through image processing
- Autores
- Leiva, Lucas; Acosta, Nelson
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The Yerba Mate quality is defined by estimating the product moisture content. This value allows adjusting the production system, by controlling the stake of the dryer to ensure the product quality. Currently this process is done manually. However, this paper presents a first approach method to estimate the moisture contents of Yerba Mate leaves through image processing techniques. The output of the proposed system is established by a neural network MLPBP, which quantifies the level of moisture for a given sample. Also present the results of applying the proposed method to a set of 55 samples collected in a Yerba Mate production establishment.
Eje: Workshop Procesamiento de señales y sistemas de tiempo real (WPSTR)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Neural nets
Signal processing
Real time
Yerba Mate moisture quantization
image processing
artificial neural networks - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23812
Ver los metadatos del registro completo
id |
SEDICI_bff831ba4cee891fb733cd0c51f446b4 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23812 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Quantization of moisture content in yerba mate leaves through image processingLeiva, LucasAcosta, NelsonCiencias InformáticasNeural netsSignal processingReal timeYerba Mate moisture quantizationimage processingartificial neural networksThe Yerba Mate quality is defined by estimating the product moisture content. This value allows adjusting the production system, by controlling the stake of the dryer to ensure the product quality. Currently this process is done manually. However, this paper presents a first approach method to estimate the moisture contents of Yerba Mate leaves through image processing techniques. The output of the proposed system is established by a neural network MLPBP, which quantifies the level of moisture for a given sample. Also present the results of applying the proposed method to a set of 55 samples collected in a Yerba Mate production establishment.Eje: Workshop Procesamiento de señales y sistemas de tiempo real (WPSTR)Red de Universidades con Carreras en Informática (RedUNCI)2012-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23812enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:25Zoai:sedici.unlp.edu.ar:10915/23812Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:25.222SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Quantization of moisture content in yerba mate leaves through image processing |
title |
Quantization of moisture content in yerba mate leaves through image processing |
spellingShingle |
Quantization of moisture content in yerba mate leaves through image processing Leiva, Lucas Ciencias Informáticas Neural nets Signal processing Real time Yerba Mate moisture quantization image processing artificial neural networks |
title_short |
Quantization of moisture content in yerba mate leaves through image processing |
title_full |
Quantization of moisture content in yerba mate leaves through image processing |
title_fullStr |
Quantization of moisture content in yerba mate leaves through image processing |
title_full_unstemmed |
Quantization of moisture content in yerba mate leaves through image processing |
title_sort |
Quantization of moisture content in yerba mate leaves through image processing |
dc.creator.none.fl_str_mv |
Leiva, Lucas Acosta, Nelson |
author |
Leiva, Lucas |
author_facet |
Leiva, Lucas Acosta, Nelson |
author_role |
author |
author2 |
Acosta, Nelson |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Neural nets Signal processing Real time Yerba Mate moisture quantization image processing artificial neural networks |
topic |
Ciencias Informáticas Neural nets Signal processing Real time Yerba Mate moisture quantization image processing artificial neural networks |
dc.description.none.fl_txt_mv |
The Yerba Mate quality is defined by estimating the product moisture content. This value allows adjusting the production system, by controlling the stake of the dryer to ensure the product quality. Currently this process is done manually. However, this paper presents a first approach method to estimate the moisture contents of Yerba Mate leaves through image processing techniques. The output of the proposed system is established by a neural network MLPBP, which quantifies the level of moisture for a given sample. Also present the results of applying the proposed method to a set of 55 samples collected in a Yerba Mate production establishment. Eje: Workshop Procesamiento de señales y sistemas de tiempo real (WPSTR) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
The Yerba Mate quality is defined by estimating the product moisture content. This value allows adjusting the production system, by controlling the stake of the dryer to ensure the product quality. Currently this process is done manually. However, this paper presents a first approach method to estimate the moisture contents of Yerba Mate leaves through image processing techniques. The output of the proposed system is established by a neural network MLPBP, which quantifies the level of moisture for a given sample. Also present the results of applying the proposed method to a set of 55 samples collected in a Yerba Mate production establishment. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23812 |
url |
http://sedici.unlp.edu.ar/handle/10915/23812 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260122899841024 |
score |
13.13397 |