Power characterisation of shared-memory hpc systems
- Autores
- Balladini, Javier; Rucci, Enzo; De Giusti, Armando Eduardo; Naiouf, Marcelo; Suppi, Remo; Rexachs del Rosario, Dolores; Luque Fadón, Emilio
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Energy consumption has become one of the greatest challenges in the eld of High Performance Computing (HPC). Besides its impact on the environment, energy is a limiting factor for the HPC. Keeping the power consumption of a system below a threshold is one of the great problems; and power prediction can help to solve it. The power characterisation can be used to know the power behaviour of the system under study, and to be a support to reach the power prediction. Furthermore, it could be used to design power-aware application programs. In this article we propose a methodology to characterise the power consumption of shared-memory HPC systems. Our proposed methodology involves the nding of in uence factors on power consumed by the systems. It is similar to previous works, but we propose an in-deep approach that can help us to get a better power characterisation of the system. We apply our methodology to characterise an Intel server platform and the results show that we can nd a more extended set of in uence factors on power consumption.
Eje: Workshop Procesamiento distribuido y paralelo (WPDP)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Power Characterisation
Shared-Memory
HPC Systems
Distributed
Parallel - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23630
Ver los metadatos del registro completo
id |
SEDICI_bdbfb1316557241009dca2e97ecc30b5 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23630 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Power characterisation of shared-memory hpc systemsBalladini, JavierRucci, EnzoDe Giusti, Armando EduardoNaiouf, MarceloSuppi, RemoRexachs del Rosario, DoloresLuque Fadón, EmilioCiencias InformáticasPower CharacterisationShared-MemoryHPC SystemsDistributedParallelEnergy consumption has become one of the greatest challenges in the eld of High Performance Computing (HPC). Besides its impact on the environment, energy is a limiting factor for the HPC. Keeping the power consumption of a system below a threshold is one of the great problems; and power prediction can help to solve it. The power characterisation can be used to know the power behaviour of the system under study, and to be a support to reach the power prediction. Furthermore, it could be used to design power-aware application programs. In this article we propose a methodology to characterise the power consumption of shared-memory HPC systems. Our proposed methodology involves the nding of in uence factors on power consumed by the systems. It is similar to previous works, but we propose an in-deep approach that can help us to get a better power characterisation of the system. We apply our methodology to characterise an Intel server platform and the results show that we can nd a more extended set of in uence factors on power consumption.Eje: Workshop Procesamiento distribuido y paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI)2012-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23630enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:20Zoai:sedici.unlp.edu.ar:10915/23630Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:20.454SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Power characterisation of shared-memory hpc systems |
title |
Power characterisation of shared-memory hpc systems |
spellingShingle |
Power characterisation of shared-memory hpc systems Balladini, Javier Ciencias Informáticas Power Characterisation Shared-Memory HPC Systems Distributed Parallel |
title_short |
Power characterisation of shared-memory hpc systems |
title_full |
Power characterisation of shared-memory hpc systems |
title_fullStr |
Power characterisation of shared-memory hpc systems |
title_full_unstemmed |
Power characterisation of shared-memory hpc systems |
title_sort |
Power characterisation of shared-memory hpc systems |
dc.creator.none.fl_str_mv |
Balladini, Javier Rucci, Enzo De Giusti, Armando Eduardo Naiouf, Marcelo Suppi, Remo Rexachs del Rosario, Dolores Luque Fadón, Emilio |
author |
Balladini, Javier |
author_facet |
Balladini, Javier Rucci, Enzo De Giusti, Armando Eduardo Naiouf, Marcelo Suppi, Remo Rexachs del Rosario, Dolores Luque Fadón, Emilio |
author_role |
author |
author2 |
Rucci, Enzo De Giusti, Armando Eduardo Naiouf, Marcelo Suppi, Remo Rexachs del Rosario, Dolores Luque Fadón, Emilio |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Power Characterisation Shared-Memory HPC Systems Distributed Parallel |
topic |
Ciencias Informáticas Power Characterisation Shared-Memory HPC Systems Distributed Parallel |
dc.description.none.fl_txt_mv |
Energy consumption has become one of the greatest challenges in the eld of High Performance Computing (HPC). Besides its impact on the environment, energy is a limiting factor for the HPC. Keeping the power consumption of a system below a threshold is one of the great problems; and power prediction can help to solve it. The power characterisation can be used to know the power behaviour of the system under study, and to be a support to reach the power prediction. Furthermore, it could be used to design power-aware application programs. In this article we propose a methodology to characterise the power consumption of shared-memory HPC systems. Our proposed methodology involves the nding of in uence factors on power consumed by the systems. It is similar to previous works, but we propose an in-deep approach that can help us to get a better power characterisation of the system. We apply our methodology to characterise an Intel server platform and the results show that we can nd a more extended set of in uence factors on power consumption. Eje: Workshop Procesamiento distribuido y paralelo (WPDP) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Energy consumption has become one of the greatest challenges in the eld of High Performance Computing (HPC). Besides its impact on the environment, energy is a limiting factor for the HPC. Keeping the power consumption of a system below a threshold is one of the great problems; and power prediction can help to solve it. The power characterisation can be used to know the power behaviour of the system under study, and to be a support to reach the power prediction. Furthermore, it could be used to design power-aware application programs. In this article we propose a methodology to characterise the power consumption of shared-memory HPC systems. Our proposed methodology involves the nding of in uence factors on power consumed by the systems. It is similar to previous works, but we propose an in-deep approach that can help us to get a better power characterisation of the system. We apply our methodology to characterise an Intel server platform and the results show that we can nd a more extended set of in uence factors on power consumption. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23630 |
url |
http://sedici.unlp.edu.ar/handle/10915/23630 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260122034765824 |
score |
13.13397 |