Power Characterisation of Shared-Memory HPC Systems
- Autores
- Balladini, Javier; Rucci, Enzo; De Giusti, Armando Eduardo; Naiouf, Marcelo; Suppi, Remo; Rexachs del Rosario, Dolores; Luque Fadón, Emilio; De Giusti, Armando Eduardo; Simari, Guillermo Ricardo; Pesado, Patricia Mabel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- Energy consumption has become one of the greatest challenges in the field of High Performance Computing (HPC). Besides its impact on the environment, energy is a limiting factor for the HPC. Keeping the power consumption of a system below a threshold is one of the great problems; and power prediction can help to solve it. The power characterisation can be used to know the power behaviour of the system under study, and to be a support to reach the power prediction. Furthermore, it could be used to design power-aware application programs. In this article we propose a methodology to characterise the power consumption of shared-memory HPC systems. Our proposed methodology involves the finding of influence factors on power consumed by the systems. It is similar to previous works, but we propose an in-deep approach that can help us to get a better power characterisation of the system. We apply our methodology to characterise an Intel server platform and the results show that we can find a more extended set of influence factors on power consumption.
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
power characterisation
shared memory systems
microbenchmarks
green computing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/81224
Ver los metadatos del registro completo
id |
SEDICI_bef6f750ac879f57d0aa0e118d7712e6 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/81224 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Power Characterisation of Shared-Memory HPC SystemsBalladini, JavierRucci, EnzoDe Giusti, Armando EduardoNaiouf, MarceloSuppi, RemoRexachs del Rosario, DoloresLuque Fadón, EmilioDe Giusti, Armando EduardoSimari, Guillermo RicardoPesado, Patricia MabelCiencias Informáticaspower characterisationshared memory systemsmicrobenchmarksgreen computingEnergy consumption has become one of the greatest challenges in the field of High Performance Computing (HPC). Besides its impact on the environment, energy is a limiting factor for the HPC. Keeping the power consumption of a system below a threshold is one of the great problems; and power prediction can help to solve it. The power characterisation can be used to know the power behaviour of the system under study, and to be a support to reach the power prediction. Furthermore, it could be used to design power-aware application programs. In this article we propose a methodology to characterise the power consumption of shared-memory HPC systems. Our proposed methodology involves the finding of influence factors on power consumed by the systems. It is similar to previous works, but we propose an in-deep approach that can help us to get a better power characterisation of the system. We apply our methodology to characterise an Intel server platform and the results show that we can find a more extended set of influence factors on power consumption.Red de Universidades con Carreras en Informática (RedUNCI)Editorial de la Universidad Nacional de La Plata (EDULP)2013-03-31info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionCapitulo de librohttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdf53-65http://sedici.unlp.edu.ar/handle/10915/81224enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-1985-20-3info:eu-repo/semantics/reference/hdl/10915/58940info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:17:44Zoai:sedici.unlp.edu.ar:10915/81224Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:17:45.228SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Power Characterisation of Shared-Memory HPC Systems |
title |
Power Characterisation of Shared-Memory HPC Systems |
spellingShingle |
Power Characterisation of Shared-Memory HPC Systems Balladini, Javier Ciencias Informáticas power characterisation shared memory systems microbenchmarks green computing |
title_short |
Power Characterisation of Shared-Memory HPC Systems |
title_full |
Power Characterisation of Shared-Memory HPC Systems |
title_fullStr |
Power Characterisation of Shared-Memory HPC Systems |
title_full_unstemmed |
Power Characterisation of Shared-Memory HPC Systems |
title_sort |
Power Characterisation of Shared-Memory HPC Systems |
dc.creator.none.fl_str_mv |
Balladini, Javier Rucci, Enzo De Giusti, Armando Eduardo Naiouf, Marcelo Suppi, Remo Rexachs del Rosario, Dolores Luque Fadón, Emilio De Giusti, Armando Eduardo Simari, Guillermo Ricardo Pesado, Patricia Mabel |
author |
Balladini, Javier |
author_facet |
Balladini, Javier Rucci, Enzo De Giusti, Armando Eduardo Naiouf, Marcelo Suppi, Remo Rexachs del Rosario, Dolores Luque Fadón, Emilio Simari, Guillermo Ricardo Pesado, Patricia Mabel |
author_role |
author |
author2 |
Rucci, Enzo De Giusti, Armando Eduardo Naiouf, Marcelo Suppi, Remo Rexachs del Rosario, Dolores Luque Fadón, Emilio Simari, Guillermo Ricardo Pesado, Patricia Mabel |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas power characterisation shared memory systems microbenchmarks green computing |
topic |
Ciencias Informáticas power characterisation shared memory systems microbenchmarks green computing |
dc.description.none.fl_txt_mv |
Energy consumption has become one of the greatest challenges in the field of High Performance Computing (HPC). Besides its impact on the environment, energy is a limiting factor for the HPC. Keeping the power consumption of a system below a threshold is one of the great problems; and power prediction can help to solve it. The power characterisation can be used to know the power behaviour of the system under study, and to be a support to reach the power prediction. Furthermore, it could be used to design power-aware application programs. In this article we propose a methodology to characterise the power consumption of shared-memory HPC systems. Our proposed methodology involves the finding of influence factors on power consumed by the systems. It is similar to previous works, but we propose an in-deep approach that can help us to get a better power characterisation of the system. We apply our methodology to characterise an Intel server platform and the results show that we can find a more extended set of influence factors on power consumption. Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Energy consumption has become one of the greatest challenges in the field of High Performance Computing (HPC). Besides its impact on the environment, energy is a limiting factor for the HPC. Keeping the power consumption of a system below a threshold is one of the great problems; and power prediction can help to solve it. The power characterisation can be used to know the power behaviour of the system under study, and to be a support to reach the power prediction. Furthermore, it could be used to design power-aware application programs. In this article we propose a methodology to characterise the power consumption of shared-memory HPC systems. Our proposed methodology involves the finding of influence factors on power consumed by the systems. It is similar to previous works, but we propose an in-deep approach that can help us to get a better power characterisation of the system. We apply our methodology to characterise an Intel server platform and the results show that we can find a more extended set of influence factors on power consumption. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03-31 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bookPart info:eu-repo/semantics/publishedVersion Capitulo de libro http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/81224 |
url |
http://sedici.unlp.edu.ar/handle/10915/81224 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-1985-20-3 info:eu-repo/semantics/reference/hdl/10915/58940 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.format.none.fl_str_mv |
application/pdf 53-65 |
dc.publisher.none.fl_str_mv |
Editorial de la Universidad Nacional de La Plata (EDULP) |
publisher.none.fl_str_mv |
Editorial de la Universidad Nacional de La Plata (EDULP) |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904150643310592 |
score |
12.993085 |