Análisis de paralelización con memoria compartida y memoria distribuida en clusters de nodos con múltiples núcleos
- Autores
- Wolfmann, Aaron Gustavo Horacio; Tinetti, Fernando Gustavo
- Año de publicación
- 2008
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión enviada
- Descripción
- This article presents the alternatives and performance results obtained after analyzing parallelization alternatives in clusters of nodes with multiple cores. The ultimate goal is to show if both processing and parallelization models (shared memory and distributed memory) need to be taken into account, or if only one of them is enough. The application used is classical in the context of highperformance computing: matrix multiplication. Even though this operation is representative of linear algebra applications, results are shown in terms of the conditions under which performance can be optimized and where algorithm parallelization efforts should be focused on for clusters of nodes with multiple cores. These clusters are nowadays considered as low-cost standards, since almost any desktop computer used to build clusters is based on a multi-core processor, and even on multi-processors. In any case, all processing units should be used to their maximum to optimize the performance of parallel applications.
En este trabajo se presentan las alternativas y los resultados de rendimiento obtenidos del análisis de las alternativas de paralelización en clusters de nodos con múltiples núcleos. El objetivo final es mostrar si es necesario tener en cuenta los dos modelos de procesamiento y paralelización (memoria compartida y memoria distribuida) o solamente uno de ellos. La aplicación utilizada es clásica en el contexto de cómputo de alto rendimiento: la multiplicación de matrices. Si bien esta operación es representativa de las aplicaciones de álgebra lineal, se muestran los resultados en términos de las condiciones bajo las cuales se puede optimizar rendimiento y hacia dónde debe estar enfocado el esfuerzo de la paralelización de algoritmos en los clusters de nodos con múltiples núcleos. Estos clusters son considerados como los estándares de bajo costo hoy en día, dado que casi cualquier máquina de escritorio con la que se construyen los clusters está basada en un procesador con más de un núcleo e, inclusive con más de un procesador. En cualquier caso, todas las unidades de procesamiento deberían ser utilizadas al máximo para optimizar el rendimiento obtenido por las aplicaciones paralelas
Workshop de Procesamiento Distribuido y Paralelo (WPDP) - Materia
-
Ciencias Informáticas
Shared memory
Distributed memories
Parallel - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/3504
Ver los metadatos del registro completo
id |
CICBA_ecd4aae099cd16b52eabbf942280fb0e |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/3504 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Análisis de paralelización con memoria compartida y memoria distribuida en clusters de nodos con múltiples núcleosWolfmann, Aaron Gustavo HoracioTinetti, Fernando GustavoCiencias InformáticasShared memoryDistributed memoriesParallelThis article presents the alternatives and performance results obtained after analyzing parallelization alternatives in clusters of nodes with multiple cores. The ultimate goal is to show if both processing and parallelization models (shared memory and distributed memory) need to be taken into account, or if only one of them is enough. The application used is classical in the context of highperformance computing: matrix multiplication. Even though this operation is representative of linear algebra applications, results are shown in terms of the conditions under which performance can be optimized and where algorithm parallelization efforts should be focused on for clusters of nodes with multiple cores. These clusters are nowadays considered as low-cost standards, since almost any desktop computer used to build clusters is based on a multi-core processor, and even on multi-processors. In any case, all processing units should be used to their maximum to optimize the performance of parallel applications.En este trabajo se presentan las alternativas y los resultados de rendimiento obtenidos del análisis de las alternativas de paralelización en clusters de nodos con múltiples núcleos. El objetivo final es mostrar si es necesario tener en cuenta los dos modelos de procesamiento y paralelización (memoria compartida y memoria distribuida) o solamente uno de ellos. La aplicación utilizada es clásica en el contexto de cómputo de alto rendimiento: la multiplicación de matrices. Si bien esta operación es representativa de las aplicaciones de álgebra lineal, se muestran los resultados en términos de las condiciones bajo las cuales se puede optimizar rendimiento y hacia dónde debe estar enfocado el esfuerzo de la paralelización de algoritmos en los clusters de nodos con múltiples núcleos. Estos clusters son considerados como los estándares de bajo costo hoy en día, dado que casi cualquier máquina de escritorio con la que se construyen los clusters está basada en un procesador con más de un núcleo e, inclusive con más de un procesador. En cualquier caso, todas las unidades de procesamiento deberían ser utilizadas al máximo para optimizar el rendimiento obtenido por las aplicaciones paralelasWorkshop de Procesamiento Distribuido y Paralelo (WPDP)2008-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/3504spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-11T10:18:08Zoai:digital.cic.gba.gob.ar:11746/3504Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-11 10:18:08.513CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Análisis de paralelización con memoria compartida y memoria distribuida en clusters de nodos con múltiples núcleos |
title |
Análisis de paralelización con memoria compartida y memoria distribuida en clusters de nodos con múltiples núcleos |
spellingShingle |
Análisis de paralelización con memoria compartida y memoria distribuida en clusters de nodos con múltiples núcleos Wolfmann, Aaron Gustavo Horacio Ciencias Informáticas Shared memory Distributed memories Parallel |
title_short |
Análisis de paralelización con memoria compartida y memoria distribuida en clusters de nodos con múltiples núcleos |
title_full |
Análisis de paralelización con memoria compartida y memoria distribuida en clusters de nodos con múltiples núcleos |
title_fullStr |
Análisis de paralelización con memoria compartida y memoria distribuida en clusters de nodos con múltiples núcleos |
title_full_unstemmed |
Análisis de paralelización con memoria compartida y memoria distribuida en clusters de nodos con múltiples núcleos |
title_sort |
Análisis de paralelización con memoria compartida y memoria distribuida en clusters de nodos con múltiples núcleos |
dc.creator.none.fl_str_mv |
Wolfmann, Aaron Gustavo Horacio Tinetti, Fernando Gustavo |
author |
Wolfmann, Aaron Gustavo Horacio |
author_facet |
Wolfmann, Aaron Gustavo Horacio Tinetti, Fernando Gustavo |
author_role |
author |
author2 |
Tinetti, Fernando Gustavo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Shared memory Distributed memories Parallel |
topic |
Ciencias Informáticas Shared memory Distributed memories Parallel |
dc.description.none.fl_txt_mv |
This article presents the alternatives and performance results obtained after analyzing parallelization alternatives in clusters of nodes with multiple cores. The ultimate goal is to show if both processing and parallelization models (shared memory and distributed memory) need to be taken into account, or if only one of them is enough. The application used is classical in the context of highperformance computing: matrix multiplication. Even though this operation is representative of linear algebra applications, results are shown in terms of the conditions under which performance can be optimized and where algorithm parallelization efforts should be focused on for clusters of nodes with multiple cores. These clusters are nowadays considered as low-cost standards, since almost any desktop computer used to build clusters is based on a multi-core processor, and even on multi-processors. In any case, all processing units should be used to their maximum to optimize the performance of parallel applications. En este trabajo se presentan las alternativas y los resultados de rendimiento obtenidos del análisis de las alternativas de paralelización en clusters de nodos con múltiples núcleos. El objetivo final es mostrar si es necesario tener en cuenta los dos modelos de procesamiento y paralelización (memoria compartida y memoria distribuida) o solamente uno de ellos. La aplicación utilizada es clásica en el contexto de cómputo de alto rendimiento: la multiplicación de matrices. Si bien esta operación es representativa de las aplicaciones de álgebra lineal, se muestran los resultados en términos de las condiciones bajo las cuales se puede optimizar rendimiento y hacia dónde debe estar enfocado el esfuerzo de la paralelización de algoritmos en los clusters de nodos con múltiples núcleos. Estos clusters son considerados como los estándares de bajo costo hoy en día, dado que casi cualquier máquina de escritorio con la que se construyen los clusters está basada en un procesador con más de un núcleo e, inclusive con más de un procesador. En cualquier caso, todas las unidades de procesamiento deberían ser utilizadas al máximo para optimizar el rendimiento obtenido por las aplicaciones paralelas Workshop de Procesamiento Distribuido y Paralelo (WPDP) |
description |
This article presents the alternatives and performance results obtained after analyzing parallelization alternatives in clusters of nodes with multiple cores. The ultimate goal is to show if both processing and parallelization models (shared memory and distributed memory) need to be taken into account, or if only one of them is enough. The application used is classical in the context of highperformance computing: matrix multiplication. Even though this operation is representative of linear algebra applications, results are shown in terms of the conditions under which performance can be optimized and where algorithm parallelization efforts should be focused on for clusters of nodes with multiple cores. These clusters are nowadays considered as low-cost standards, since almost any desktop computer used to build clusters is based on a multi-core processor, and even on multi-processors. In any case, all processing units should be used to their maximum to optimize the performance of parallel applications. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/submittedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
submittedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/3504 |
url |
https://digital.cic.gba.gob.ar/handle/11746/3504 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1842974743936892928 |
score |
12.993085 |