Dynamic elasticity of cubic diamond

Autores
Bucknum, Michael J.; Castro, Eduardo Alberto
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Previously, the structure of the carbon allotrope glitter has been disclosed, and a theory accompanying the structural report as to its bulk modulus at pressure predicted it would be among the hardest materials possible. The dynamic elasticity theory developed in that paper, involving the forces generated in elastic chemical bond deformations resulting from applied mechanical forces, is here applied to the cubic diamond lattice. Stresses, both lateral and axial, contribute to the bulk modulus of cubic diamond at pressure. The ultimate strength of the cubic diamond lattice, in the approximations of the dynamic elasticity theory presented in this paper, is estimated to be in excess of 1 TPa, at modest bond length deformations of about 0.1 Å, and when including the zero pressure bulk modulus B₀ in the computation. In particular, the dynamic elasticity model predicts the hardest direction of cubic diamond will be for an isotropic mechanical force applied along 〈111〉 directions of the structural unit cell.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Ciencias Exactas
Física
Química
cubic diamond
elasticity
crystal structure
force density
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/131622

id SEDICI_bb6a66593375ff0e5df492159453fd71
oai_identifier_str oai:sedici.unlp.edu.ar:10915/131622
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Dynamic elasticity of cubic diamondBucknum, Michael J.Castro, Eduardo AlbertoCiencias ExactasFísicaQuímicacubic diamondelasticitycrystal structureforce densityPreviously, the structure of the carbon allotrope glitter has been disclosed, and a theory accompanying the structural report as to its bulk modulus at pressure predicted it would be among the hardest materials possible. The dynamic elasticity theory developed in that paper, involving the forces generated in elastic chemical bond deformations resulting from applied mechanical forces, is here applied to the cubic diamond lattice. Stresses, both lateral and axial, contribute to the bulk modulus of cubic diamond at pressure. The ultimate strength of the cubic diamond lattice, in the approximations of the dynamic elasticity theory presented in this paper, is estimated to be in excess of 1 TPa, at modest bond length deformations of about 0.1 Å, and when including the zero pressure bulk modulus B₀ in the computation. In particular, the dynamic elasticity model predicts the hardest direction of cubic diamond will be for an isotropic mechanical force applied along 〈111〉 directions of the structural unit cell.Facultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2006-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf341-347http://sedici.unlp.edu.ar/handle/10915/131622enginfo:eu-repo/semantics/altIdentifier/issn/0259-9791info:eu-repo/semantics/altIdentifier/issn/1572-8897info:eu-repo/semantics/altIdentifier/doi/10.1007/s10910-005-9038-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:47Zoai:sedici.unlp.edu.ar:10915/131622Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:47.507SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Dynamic elasticity of cubic diamond
title Dynamic elasticity of cubic diamond
spellingShingle Dynamic elasticity of cubic diamond
Bucknum, Michael J.
Ciencias Exactas
Física
Química
cubic diamond
elasticity
crystal structure
force density
title_short Dynamic elasticity of cubic diamond
title_full Dynamic elasticity of cubic diamond
title_fullStr Dynamic elasticity of cubic diamond
title_full_unstemmed Dynamic elasticity of cubic diamond
title_sort Dynamic elasticity of cubic diamond
dc.creator.none.fl_str_mv Bucknum, Michael J.
Castro, Eduardo Alberto
author Bucknum, Michael J.
author_facet Bucknum, Michael J.
Castro, Eduardo Alberto
author_role author
author2 Castro, Eduardo Alberto
author2_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
Química
cubic diamond
elasticity
crystal structure
force density
topic Ciencias Exactas
Física
Química
cubic diamond
elasticity
crystal structure
force density
dc.description.none.fl_txt_mv Previously, the structure of the carbon allotrope glitter has been disclosed, and a theory accompanying the structural report as to its bulk modulus at pressure predicted it would be among the hardest materials possible. The dynamic elasticity theory developed in that paper, involving the forces generated in elastic chemical bond deformations resulting from applied mechanical forces, is here applied to the cubic diamond lattice. Stresses, both lateral and axial, contribute to the bulk modulus of cubic diamond at pressure. The ultimate strength of the cubic diamond lattice, in the approximations of the dynamic elasticity theory presented in this paper, is estimated to be in excess of 1 TPa, at modest bond length deformations of about 0.1 Å, and when including the zero pressure bulk modulus B₀ in the computation. In particular, the dynamic elasticity model predicts the hardest direction of cubic diamond will be for an isotropic mechanical force applied along 〈111〉 directions of the structural unit cell.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description Previously, the structure of the carbon allotrope glitter has been disclosed, and a theory accompanying the structural report as to its bulk modulus at pressure predicted it would be among the hardest materials possible. The dynamic elasticity theory developed in that paper, involving the forces generated in elastic chemical bond deformations resulting from applied mechanical forces, is here applied to the cubic diamond lattice. Stresses, both lateral and axial, contribute to the bulk modulus of cubic diamond at pressure. The ultimate strength of the cubic diamond lattice, in the approximations of the dynamic elasticity theory presented in this paper, is estimated to be in excess of 1 TPa, at modest bond length deformations of about 0.1 Å, and when including the zero pressure bulk modulus B₀ in the computation. In particular, the dynamic elasticity model predicts the hardest direction of cubic diamond will be for an isotropic mechanical force applied along 〈111〉 directions of the structural unit cell.
publishDate 2006
dc.date.none.fl_str_mv 2006-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/131622
url http://sedici.unlp.edu.ar/handle/10915/131622
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0259-9791
info:eu-repo/semantics/altIdentifier/issn/1572-8897
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10910-005-9038-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
341-347
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616197577900032
score 13.070432