Dynamic elasticity of cubic diamond
- Autores
- Bucknum, Michael J.; Castro, Eduardo Alberto
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Previously, the structure of the carbon allotrope glitter has been disclosed, and a theory accompanying the structural report as to its bulk modulus at pressure predicted it would be among the hardest materials possible. The dynamic elasticity theory developed in that paper, involving the forces generated in elastic chemical bond deformations resulting from applied mechanical forces, is here applied to the cubic diamond lattice. Stresses, both lateral and axial, contribute to the bulk modulus of cubic diamond at pressure. The ultimate strength of the cubic diamond lattice, in the approximations of the dynamic elasticity theory presented in this paper, is estimated to be in excess of 1 TPa, at modest bond length deformations of about 0.1 Å, and when including the zero pressure bulk modulus B₀ in the computation. In particular, the dynamic elasticity model predicts the hardest direction of cubic diamond will be for an isotropic mechanical force applied along 〈111〉 directions of the structural unit cell.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - Materia
-
Ciencias Exactas
Física
Química
cubic diamond
elasticity
crystal structure
force density - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/131622
Ver los metadatos del registro completo
id |
SEDICI_bb6a66593375ff0e5df492159453fd71 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/131622 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Dynamic elasticity of cubic diamondBucknum, Michael J.Castro, Eduardo AlbertoCiencias ExactasFísicaQuímicacubic diamondelasticitycrystal structureforce densityPreviously, the structure of the carbon allotrope glitter has been disclosed, and a theory accompanying the structural report as to its bulk modulus at pressure predicted it would be among the hardest materials possible. The dynamic elasticity theory developed in that paper, involving the forces generated in elastic chemical bond deformations resulting from applied mechanical forces, is here applied to the cubic diamond lattice. Stresses, both lateral and axial, contribute to the bulk modulus of cubic diamond at pressure. The ultimate strength of the cubic diamond lattice, in the approximations of the dynamic elasticity theory presented in this paper, is estimated to be in excess of 1 TPa, at modest bond length deformations of about 0.1 Å, and when including the zero pressure bulk modulus B₀ in the computation. In particular, the dynamic elasticity model predicts the hardest direction of cubic diamond will be for an isotropic mechanical force applied along 〈111〉 directions of the structural unit cell.Facultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2006-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf341-347http://sedici.unlp.edu.ar/handle/10915/131622enginfo:eu-repo/semantics/altIdentifier/issn/0259-9791info:eu-repo/semantics/altIdentifier/issn/1572-8897info:eu-repo/semantics/altIdentifier/doi/10.1007/s10910-005-9038-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:47Zoai:sedici.unlp.edu.ar:10915/131622Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:47.507SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Dynamic elasticity of cubic diamond |
title |
Dynamic elasticity of cubic diamond |
spellingShingle |
Dynamic elasticity of cubic diamond Bucknum, Michael J. Ciencias Exactas Física Química cubic diamond elasticity crystal structure force density |
title_short |
Dynamic elasticity of cubic diamond |
title_full |
Dynamic elasticity of cubic diamond |
title_fullStr |
Dynamic elasticity of cubic diamond |
title_full_unstemmed |
Dynamic elasticity of cubic diamond |
title_sort |
Dynamic elasticity of cubic diamond |
dc.creator.none.fl_str_mv |
Bucknum, Michael J. Castro, Eduardo Alberto |
author |
Bucknum, Michael J. |
author_facet |
Bucknum, Michael J. Castro, Eduardo Alberto |
author_role |
author |
author2 |
Castro, Eduardo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física Química cubic diamond elasticity crystal structure force density |
topic |
Ciencias Exactas Física Química cubic diamond elasticity crystal structure force density |
dc.description.none.fl_txt_mv |
Previously, the structure of the carbon allotrope glitter has been disclosed, and a theory accompanying the structural report as to its bulk modulus at pressure predicted it would be among the hardest materials possible. The dynamic elasticity theory developed in that paper, involving the forces generated in elastic chemical bond deformations resulting from applied mechanical forces, is here applied to the cubic diamond lattice. Stresses, both lateral and axial, contribute to the bulk modulus of cubic diamond at pressure. The ultimate strength of the cubic diamond lattice, in the approximations of the dynamic elasticity theory presented in this paper, is estimated to be in excess of 1 TPa, at modest bond length deformations of about 0.1 Å, and when including the zero pressure bulk modulus B₀ in the computation. In particular, the dynamic elasticity model predicts the hardest direction of cubic diamond will be for an isotropic mechanical force applied along 〈111〉 directions of the structural unit cell. Facultad de Ciencias Exactas Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
description |
Previously, the structure of the carbon allotrope glitter has been disclosed, and a theory accompanying the structural report as to its bulk modulus at pressure predicted it would be among the hardest materials possible. The dynamic elasticity theory developed in that paper, involving the forces generated in elastic chemical bond deformations resulting from applied mechanical forces, is here applied to the cubic diamond lattice. Stresses, both lateral and axial, contribute to the bulk modulus of cubic diamond at pressure. The ultimate strength of the cubic diamond lattice, in the approximations of the dynamic elasticity theory presented in this paper, is estimated to be in excess of 1 TPa, at modest bond length deformations of about 0.1 Å, and when including the zero pressure bulk modulus B₀ in the computation. In particular, the dynamic elasticity model predicts the hardest direction of cubic diamond will be for an isotropic mechanical force applied along 〈111〉 directions of the structural unit cell. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/131622 |
url |
http://sedici.unlp.edu.ar/handle/10915/131622 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0259-9791 info:eu-repo/semantics/altIdentifier/issn/1572-8897 info:eu-repo/semantics/altIdentifier/doi/10.1007/s10910-005-9038-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 341-347 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616197577900032 |
score |
13.070432 |