Towards a microscopic theory of the modulus of elasticity in crystalline covalent materials and a survey of potential superhard materials

Autores
Bucknum, Michael J.; Castro, Eduardo Alberto
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The present report is an account of the generalization of the dynamic elasticity theory earlier proposed by Bucknum et al. and applied to the cubic diamond and tetragonal glitter lattices. It describes a theory of elasticity in which the elasticity moduli are based upon the microscopic constants of the various structure-types. Such microscopic constants include the force constants of the chemical bonds in the unit of pattern of the material, its associated lattice parameters, and the elastic chemical bond deformation parameters of the material. In developing the outward features of the dynamic elasticity model, it is shown that an integral over the force density in the unit cell of a given material; where the force is modeled based upon the elastic deformation forces of the chemical bonds in the unit of pattern of the material, and the volume is written as a function of the deformations taking place inside the unit cell of the material; generates the terms for calculating its modulus of elasticity at pressure, in components, that are directed along the principal axes of the unit cell. Several potential solutions to the problem of superhardness are discussed and illustrated.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Química
Chemical Bond
Elasticity Theory
Elasticity Modulo
Deformation Parameter
Superhard Material
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/142243

id SEDICI_27c12efa4d566b5055e069a41c02bce6
oai_identifier_str oai:sedici.unlp.edu.ar:10915/142243
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Towards a microscopic theory of the modulus of elasticity in crystalline covalent materials and a survey of potential superhard materialsBucknum, Michael J.Castro, Eduardo AlbertoQuímicaChemical BondElasticity TheoryElasticity ModuloDeformation ParameterSuperhard MaterialThe present report is an account of the generalization of the dynamic elasticity theory earlier proposed by Bucknum et al. and applied to the cubic diamond and tetragonal glitter lattices. It describes a theory of elasticity in which the elasticity moduli are based upon the microscopic constants of the various structure-types. Such microscopic constants include the force constants of the chemical bonds in the unit of pattern of the material, its associated lattice parameters, and the elastic chemical bond deformation parameters of the material. In developing the outward features of the dynamic elasticity model, it is shown that an integral over the force density in the unit cell of a given material; where the force is modeled based upon the elastic deformation forces of the chemical bonds in the unit of pattern of the material, and the volume is written as a function of the deformations taking place inside the unit cell of the material; generates the terms for calculating its modulus of elasticity at pressure, in components, that are directed along the principal axes of the unit cell. Several potential solutions to the problem of superhardness are discussed and illustrated.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf27-42http://sedici.unlp.edu.ar/handle/10915/142243enginfo:eu-repo/semantics/altIdentifier/issn/0259-9791info:eu-repo/semantics/altIdentifier/issn/1572-8897info:eu-repo/semantics/altIdentifier/doi/10.1007/s10910-005-4528-3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:32Zoai:sedici.unlp.edu.ar:10915/142243Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:33.136SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Towards a microscopic theory of the modulus of elasticity in crystalline covalent materials and a survey of potential superhard materials
title Towards a microscopic theory of the modulus of elasticity in crystalline covalent materials and a survey of potential superhard materials
spellingShingle Towards a microscopic theory of the modulus of elasticity in crystalline covalent materials and a survey of potential superhard materials
Bucknum, Michael J.
Química
Chemical Bond
Elasticity Theory
Elasticity Modulo
Deformation Parameter
Superhard Material
title_short Towards a microscopic theory of the modulus of elasticity in crystalline covalent materials and a survey of potential superhard materials
title_full Towards a microscopic theory of the modulus of elasticity in crystalline covalent materials and a survey of potential superhard materials
title_fullStr Towards a microscopic theory of the modulus of elasticity in crystalline covalent materials and a survey of potential superhard materials
title_full_unstemmed Towards a microscopic theory of the modulus of elasticity in crystalline covalent materials and a survey of potential superhard materials
title_sort Towards a microscopic theory of the modulus of elasticity in crystalline covalent materials and a survey of potential superhard materials
dc.creator.none.fl_str_mv Bucknum, Michael J.
Castro, Eduardo Alberto
author Bucknum, Michael J.
author_facet Bucknum, Michael J.
Castro, Eduardo Alberto
author_role author
author2 Castro, Eduardo Alberto
author2_role author
dc.subject.none.fl_str_mv Química
Chemical Bond
Elasticity Theory
Elasticity Modulo
Deformation Parameter
Superhard Material
topic Química
Chemical Bond
Elasticity Theory
Elasticity Modulo
Deformation Parameter
Superhard Material
dc.description.none.fl_txt_mv The present report is an account of the generalization of the dynamic elasticity theory earlier proposed by Bucknum et al. and applied to the cubic diamond and tetragonal glitter lattices. It describes a theory of elasticity in which the elasticity moduli are based upon the microscopic constants of the various structure-types. Such microscopic constants include the force constants of the chemical bonds in the unit of pattern of the material, its associated lattice parameters, and the elastic chemical bond deformation parameters of the material. In developing the outward features of the dynamic elasticity model, it is shown that an integral over the force density in the unit cell of a given material; where the force is modeled based upon the elastic deformation forces of the chemical bonds in the unit of pattern of the material, and the volume is written as a function of the deformations taking place inside the unit cell of the material; generates the terms for calculating its modulus of elasticity at pressure, in components, that are directed along the principal axes of the unit cell. Several potential solutions to the problem of superhardness are discussed and illustrated.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description The present report is an account of the generalization of the dynamic elasticity theory earlier proposed by Bucknum et al. and applied to the cubic diamond and tetragonal glitter lattices. It describes a theory of elasticity in which the elasticity moduli are based upon the microscopic constants of the various structure-types. Such microscopic constants include the force constants of the chemical bonds in the unit of pattern of the material, its associated lattice parameters, and the elastic chemical bond deformation parameters of the material. In developing the outward features of the dynamic elasticity model, it is shown that an integral over the force density in the unit cell of a given material; where the force is modeled based upon the elastic deformation forces of the chemical bonds in the unit of pattern of the material, and the volume is written as a function of the deformations taking place inside the unit cell of the material; generates the terms for calculating its modulus of elasticity at pressure, in components, that are directed along the principal axes of the unit cell. Several potential solutions to the problem of superhardness are discussed and illustrated.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/142243
url http://sedici.unlp.edu.ar/handle/10915/142243
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0259-9791
info:eu-repo/semantics/altIdentifier/issn/1572-8897
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10910-005-4528-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
27-42
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616205145473024
score 13.070432