Hillock formation on nanocrystalline diamond

Autores
Valencia, Felipe J.; González, Rafael I.; Bringa, Eduardo Marcial; Kiwi, Miguel
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Hillock formation on nanocrystalline (nc) diamond under swift heavy ion irradiation is studied by means of classical molecular dynamics. The irradiation is simulated by means of a thermal spike model, the nc samples include as many as 5 millions atoms. Our results show that hillocks on nc diamond can be created for stopping powers (SPe) in the range of 12–17 keV/nm, and grain sizes less than 13 nm. For smaller values of the SPe only point defects are observed on the nc surface, while for larger SPe hillocks suffer a transition to crater-rim, because of the increased sputtering that is due to the large energy that the ions deposit. We observe that the sputtering yields depend quadratically on the stopping power, contrary to what has been obtained by simulations for some single crystal solids. In addition, our results show that hillocks are smaller for 5 and 7 nm grain sizes, due to the large free volume that is available on the grain boundaries. Instead, for 10 and 13 nm the hillock is limited only to the amorphization of the grain closest to the surface. No hillock formation is expected for larger grain sizes, because of the transition of the nc to pristine diamond, where no hillock formation has been observed.
Fil: Valencia, Felipe J.. Universidad Mayor. Facultad de Ciencias. Núcleo de Matemáticas, Física y Estadística; Chile. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: González, Rafael I.. Universidad Mayor; . Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Kiwi, Miguel. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Materia
Diamond
Irradiation
Thermal Spike
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32250

id CONICETDig_9f246e02537d4d03f6479074cc90638d
oai_identifier_str oai:ri.conicet.gov.ar:11336/32250
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Hillock formation on nanocrystalline diamondValencia, Felipe J.González, Rafael I.Bringa, Eduardo MarcialKiwi, MiguelDiamondIrradiationThermal Spikehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Hillock formation on nanocrystalline (nc) diamond under swift heavy ion irradiation is studied by means of classical molecular dynamics. The irradiation is simulated by means of a thermal spike model, the nc samples include as many as 5 millions atoms. Our results show that hillocks on nc diamond can be created for stopping powers (SPe) in the range of 12–17 keV/nm, and grain sizes less than 13 nm. For smaller values of the SPe only point defects are observed on the nc surface, while for larger SPe hillocks suffer a transition to crater-rim, because of the increased sputtering that is due to the large energy that the ions deposit. We observe that the sputtering yields depend quadratically on the stopping power, contrary to what has been obtained by simulations for some single crystal solids. In addition, our results show that hillocks are smaller for 5 and 7 nm grain sizes, due to the large free volume that is available on the grain boundaries. Instead, for 10 and 13 nm the hillock is limited only to the amorphization of the grain closest to the surface. No hillock formation is expected for larger grain sizes, because of the transition of the nc to pristine diamond, where no hillock formation has been observed.Fil: Valencia, Felipe J.. Universidad Mayor. Facultad de Ciencias. Núcleo de Matemáticas, Física y Estadística; Chile. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; ChileFil: González, Rafael I.. Universidad Mayor; . Centro para el Desarrollo de la Nanociencia y la Nanotecnología; ChileFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Kiwi, Miguel. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; ChileElsevier2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32250Valencia, Felipe J.; Kiwi, Miguel; Bringa, Eduardo Marcial; González, Rafael I.; Hillock formation on nanocrystalline diamond; Elsevier; Carbon; 119; 4-2017; 219-2240008-6223CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.carbon.2017.04.020info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0008622317303767?info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:36Zoai:ri.conicet.gov.ar:11336/32250instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:37.228CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Hillock formation on nanocrystalline diamond
title Hillock formation on nanocrystalline diamond
spellingShingle Hillock formation on nanocrystalline diamond
Valencia, Felipe J.
Diamond
Irradiation
Thermal Spike
title_short Hillock formation on nanocrystalline diamond
title_full Hillock formation on nanocrystalline diamond
title_fullStr Hillock formation on nanocrystalline diamond
title_full_unstemmed Hillock formation on nanocrystalline diamond
title_sort Hillock formation on nanocrystalline diamond
dc.creator.none.fl_str_mv Valencia, Felipe J.
González, Rafael I.
Bringa, Eduardo Marcial
Kiwi, Miguel
author Valencia, Felipe J.
author_facet Valencia, Felipe J.
González, Rafael I.
Bringa, Eduardo Marcial
Kiwi, Miguel
author_role author
author2 González, Rafael I.
Bringa, Eduardo Marcial
Kiwi, Miguel
author2_role author
author
author
dc.subject.none.fl_str_mv Diamond
Irradiation
Thermal Spike
topic Diamond
Irradiation
Thermal Spike
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Hillock formation on nanocrystalline (nc) diamond under swift heavy ion irradiation is studied by means of classical molecular dynamics. The irradiation is simulated by means of a thermal spike model, the nc samples include as many as 5 millions atoms. Our results show that hillocks on nc diamond can be created for stopping powers (SPe) in the range of 12–17 keV/nm, and grain sizes less than 13 nm. For smaller values of the SPe only point defects are observed on the nc surface, while for larger SPe hillocks suffer a transition to crater-rim, because of the increased sputtering that is due to the large energy that the ions deposit. We observe that the sputtering yields depend quadratically on the stopping power, contrary to what has been obtained by simulations for some single crystal solids. In addition, our results show that hillocks are smaller for 5 and 7 nm grain sizes, due to the large free volume that is available on the grain boundaries. Instead, for 10 and 13 nm the hillock is limited only to the amorphization of the grain closest to the surface. No hillock formation is expected for larger grain sizes, because of the transition of the nc to pristine diamond, where no hillock formation has been observed.
Fil: Valencia, Felipe J.. Universidad Mayor. Facultad de Ciencias. Núcleo de Matemáticas, Física y Estadística; Chile. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: González, Rafael I.. Universidad Mayor; . Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Kiwi, Miguel. Universidad de Chile; Chile. Centro para el Desarrollo de la Nanociencia y la Nanotecnología; Chile
description Hillock formation on nanocrystalline (nc) diamond under swift heavy ion irradiation is studied by means of classical molecular dynamics. The irradiation is simulated by means of a thermal spike model, the nc samples include as many as 5 millions atoms. Our results show that hillocks on nc diamond can be created for stopping powers (SPe) in the range of 12–17 keV/nm, and grain sizes less than 13 nm. For smaller values of the SPe only point defects are observed on the nc surface, while for larger SPe hillocks suffer a transition to crater-rim, because of the increased sputtering that is due to the large energy that the ions deposit. We observe that the sputtering yields depend quadratically on the stopping power, contrary to what has been obtained by simulations for some single crystal solids. In addition, our results show that hillocks are smaller for 5 and 7 nm grain sizes, due to the large free volume that is available on the grain boundaries. Instead, for 10 and 13 nm the hillock is limited only to the amorphization of the grain closest to the surface. No hillock formation is expected for larger grain sizes, because of the transition of the nc to pristine diamond, where no hillock formation has been observed.
publishDate 2017
dc.date.none.fl_str_mv 2017-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32250
Valencia, Felipe J.; Kiwi, Miguel; Bringa, Eduardo Marcial; González, Rafael I.; Hillock formation on nanocrystalline diamond; Elsevier; Carbon; 119; 4-2017; 219-224
0008-6223
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32250
identifier_str_mv Valencia, Felipe J.; Kiwi, Miguel; Bringa, Eduardo Marcial; González, Rafael I.; Hillock formation on nanocrystalline diamond; Elsevier; Carbon; 119; 4-2017; 219-224
0008-6223
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.carbon.2017.04.020
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0008622317303767?
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268743481163776
score 13.13397