Adaptive clustering with artificial ants
- Autores
- Ingaramo, Diego Alejandro; Leguizamón, Mario Guillermo; Errecalde, Marcelo Luis
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Clustering task aims at the unsupervised classification of patterns (e.g., observations, data, vec- tors, etc.) in different groups. Clustering problem has been approached from different disciplines during the last years. Although have been proposed different alternatives to cope with clustering, there also exists an interesting and novel field of research from which different bioinspired algorithms have emerged, e.g., genetic algorithms and ant colony algorithms. In this article we pro- pose an extension of the AntTree algorithm, an example of an algorithm recently proposed for a data mining task which is designed following the principle of self-assembling behavior observed in some species of real ants. The extension proposed called Adaptive-AntTree (AAT for short) represents a more flexible version of the original one. The ants in AAT are able of changing the assigned position in previous iterations in the tree under construction. As a consequence, this new algorithm builds an adaptive hierarchical cluster which changes over the run in order to improve the final result. The AAT performance is experimentally analyzed and compared against AntTree and K-means which is one of the more popular and referenced clustering algorithm.
Facultad de Informática - Materia
-
Ciencias Informáticas
Clustering
Data mining
computational intelligence
bioinspired algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9603
Ver los metadatos del registro completo
id |
SEDICI_ba1ec5bfb55888b9e9b87f1da5e7298e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9603 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Adaptive clustering with artificial antsIngaramo, Diego AlejandroLeguizamón, Mario GuillermoErrecalde, Marcelo LuisCiencias InformáticasClusteringData miningcomputational intelligencebioinspired algorithmsClustering task aims at the unsupervised classification of patterns (e.g., observations, data, vec- tors, etc.) in different groups. Clustering problem has been approached from different disciplines during the last years. Although have been proposed different alternatives to cope with clustering, there also exists an interesting and novel field of research from which different bioinspired algorithms have emerged, e.g., genetic algorithms and ant colony algorithms. In this article we pro- pose an extension of the AntTree algorithm, an example of an algorithm recently proposed for a data mining task which is designed following the principle of self-assembling behavior observed in some species of real ants. The extension proposed called Adaptive-AntTree (AAT for short) represents a more flexible version of the original one. The ants in AAT are able of changing the assigned position in previous iterations in the tree under construction. As a consequence, this new algorithm builds an adaptive hierarchical cluster which changes over the run in order to improve the final result. The AAT performance is experimentally analyzed and compared against AntTree and K-means which is one of the more popular and referenced clustering algorithm.Facultad de Informática2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf264-271http://sedici.unlp.edu.ar/handle/10915/9603enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Dec05-16.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:44Zoai:sedici.unlp.edu.ar:10915/9603Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:45.08SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Adaptive clustering with artificial ants |
title |
Adaptive clustering with artificial ants |
spellingShingle |
Adaptive clustering with artificial ants Ingaramo, Diego Alejandro Ciencias Informáticas Clustering Data mining computational intelligence bioinspired algorithms |
title_short |
Adaptive clustering with artificial ants |
title_full |
Adaptive clustering with artificial ants |
title_fullStr |
Adaptive clustering with artificial ants |
title_full_unstemmed |
Adaptive clustering with artificial ants |
title_sort |
Adaptive clustering with artificial ants |
dc.creator.none.fl_str_mv |
Ingaramo, Diego Alejandro Leguizamón, Mario Guillermo Errecalde, Marcelo Luis |
author |
Ingaramo, Diego Alejandro |
author_facet |
Ingaramo, Diego Alejandro Leguizamón, Mario Guillermo Errecalde, Marcelo Luis |
author_role |
author |
author2 |
Leguizamón, Mario Guillermo Errecalde, Marcelo Luis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Clustering Data mining computational intelligence bioinspired algorithms |
topic |
Ciencias Informáticas Clustering Data mining computational intelligence bioinspired algorithms |
dc.description.none.fl_txt_mv |
Clustering task aims at the unsupervised classification of patterns (e.g., observations, data, vec- tors, etc.) in different groups. Clustering problem has been approached from different disciplines during the last years. Although have been proposed different alternatives to cope with clustering, there also exists an interesting and novel field of research from which different bioinspired algorithms have emerged, e.g., genetic algorithms and ant colony algorithms. In this article we pro- pose an extension of the AntTree algorithm, an example of an algorithm recently proposed for a data mining task which is designed following the principle of self-assembling behavior observed in some species of real ants. The extension proposed called Adaptive-AntTree (AAT for short) represents a more flexible version of the original one. The ants in AAT are able of changing the assigned position in previous iterations in the tree under construction. As a consequence, this new algorithm builds an adaptive hierarchical cluster which changes over the run in order to improve the final result. The AAT performance is experimentally analyzed and compared against AntTree and K-means which is one of the more popular and referenced clustering algorithm. Facultad de Informática |
description |
Clustering task aims at the unsupervised classification of patterns (e.g., observations, data, vec- tors, etc.) in different groups. Clustering problem has been approached from different disciplines during the last years. Although have been proposed different alternatives to cope with clustering, there also exists an interesting and novel field of research from which different bioinspired algorithms have emerged, e.g., genetic algorithms and ant colony algorithms. In this article we pro- pose an extension of the AntTree algorithm, an example of an algorithm recently proposed for a data mining task which is designed following the principle of self-assembling behavior observed in some species of real ants. The extension proposed called Adaptive-AntTree (AAT for short) represents a more flexible version of the original one. The ants in AAT are able of changing the assigned position in previous iterations in the tree under construction. As a consequence, this new algorithm builds an adaptive hierarchical cluster which changes over the run in order to improve the final result. The AAT performance is experimentally analyzed and compared against AntTree and K-means which is one of the more popular and referenced clustering algorithm. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9603 |
url |
http://sedici.unlp.edu.ar/handle/10915/9603 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Dec05-16.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf 264-271 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615758373453824 |
score |
13.070432 |