Un modelo de clustering temporal
- Autores
- Ale, Juan María; Navas, María Daniela
- Año de publicación
- 2004
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Clustering consiste en particionar el conjunto de datos en colecciones de objetos de manera que dentro de cada partición los objetos sean “similares” entre sí, y a su vez se “diferencien” de los objetos contenidos en otras particiones. En la literatura han sido propuestos muchos algoritmos para realizar el proceso de clustering, pero la mayoría de ellos tiene un enfoque estático, por lo tanto, estas soluciones no pueden ser aplicadas correctamente para datos más complejos, como colecciones de objetos espacio-temporales. En muchos casos, la información guardada en las bases de datos tiene una naturaleza espacial dinámica: además de tener datos espaciales, a menudo se asocian los mismos con información temporal, como marcas de tiempo (time-stamp) ,manejo de versiones, fechas o rango de fechas. En el presente trabajo se propone un método de Clustering Temporal que realiza el proceso de clustering sólo teniendo en cuenta los atributos espaciales, pero para distintos momentos de tiempo (dato aportado por los atributos temporales). Esto nos permite ver cómo varían los clusters durante el transcurso del tiempo, observar la trayectoria de los objetos, y obtener distintas estadísticas sobre el movimiento de clusters y objetos, que no se podrían obtener aplicando un algoritmo de clustering estándar.
Eje: I - Workshop de Ingeniería de Software y Base de Datos
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
clustering temporal
k-d-Median
base de datos
SOFTWARE ENGINEERING
Data mining
Clustering - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22324
Ver los metadatos del registro completo
id |
SEDICI_9b5888516602e1a8b053d60b264dba9e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22324 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Un modelo de clustering temporalAle, Juan MaríaNavas, María DanielaCiencias Informáticasclustering temporalk-d-Medianbase de datosSOFTWARE ENGINEERINGData miningClusteringClustering consiste en particionar el conjunto de datos en colecciones de objetos de manera que dentro de cada partición los objetos sean “similares” entre sí, y a su vez se “diferencien” de los objetos contenidos en otras particiones. En la literatura han sido propuestos muchos algoritmos para realizar el proceso de clustering, pero la mayoría de ellos tiene un enfoque estático, por lo tanto, estas soluciones no pueden ser aplicadas correctamente para datos más complejos, como colecciones de objetos espacio-temporales. En muchos casos, la información guardada en las bases de datos tiene una naturaleza espacial dinámica: además de tener datos espaciales, a menudo se asocian los mismos con información temporal, como marcas de tiempo (time-stamp) ,manejo de versiones, fechas o rango de fechas. En el presente trabajo se propone un método de Clustering Temporal que realiza el proceso de clustering sólo teniendo en cuenta los atributos espaciales, pero para distintos momentos de tiempo (dato aportado por los atributos temporales). Esto nos permite ver cómo varían los clusters durante el transcurso del tiempo, observar la trayectoria de los objetos, y obtener distintas estadísticas sobre el movimiento de clusters y objetos, que no se podrían obtener aplicando un algoritmo de clustering estándar.Eje: I - Workshop de Ingeniería de Software y Base de DatosRed de Universidades con Carreras en Informática (RedUNCI)2004info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22324spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:58Zoai:sedici.unlp.edu.ar:10915/22324Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:58.333SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Un modelo de clustering temporal |
title |
Un modelo de clustering temporal |
spellingShingle |
Un modelo de clustering temporal Ale, Juan María Ciencias Informáticas clustering temporal k-d-Median base de datos SOFTWARE ENGINEERING Data mining Clustering |
title_short |
Un modelo de clustering temporal |
title_full |
Un modelo de clustering temporal |
title_fullStr |
Un modelo de clustering temporal |
title_full_unstemmed |
Un modelo de clustering temporal |
title_sort |
Un modelo de clustering temporal |
dc.creator.none.fl_str_mv |
Ale, Juan María Navas, María Daniela |
author |
Ale, Juan María |
author_facet |
Ale, Juan María Navas, María Daniela |
author_role |
author |
author2 |
Navas, María Daniela |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas clustering temporal k-d-Median base de datos SOFTWARE ENGINEERING Data mining Clustering |
topic |
Ciencias Informáticas clustering temporal k-d-Median base de datos SOFTWARE ENGINEERING Data mining Clustering |
dc.description.none.fl_txt_mv |
Clustering consiste en particionar el conjunto de datos en colecciones de objetos de manera que dentro de cada partición los objetos sean “similares” entre sí, y a su vez se “diferencien” de los objetos contenidos en otras particiones. En la literatura han sido propuestos muchos algoritmos para realizar el proceso de clustering, pero la mayoría de ellos tiene un enfoque estático, por lo tanto, estas soluciones no pueden ser aplicadas correctamente para datos más complejos, como colecciones de objetos espacio-temporales. En muchos casos, la información guardada en las bases de datos tiene una naturaleza espacial dinámica: además de tener datos espaciales, a menudo se asocian los mismos con información temporal, como marcas de tiempo (time-stamp) ,manejo de versiones, fechas o rango de fechas. En el presente trabajo se propone un método de Clustering Temporal que realiza el proceso de clustering sólo teniendo en cuenta los atributos espaciales, pero para distintos momentos de tiempo (dato aportado por los atributos temporales). Esto nos permite ver cómo varían los clusters durante el transcurso del tiempo, observar la trayectoria de los objetos, y obtener distintas estadísticas sobre el movimiento de clusters y objetos, que no se podrían obtener aplicando un algoritmo de clustering estándar. Eje: I - Workshop de Ingeniería de Software y Base de Datos Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Clustering consiste en particionar el conjunto de datos en colecciones de objetos de manera que dentro de cada partición los objetos sean “similares” entre sí, y a su vez se “diferencien” de los objetos contenidos en otras particiones. En la literatura han sido propuestos muchos algoritmos para realizar el proceso de clustering, pero la mayoría de ellos tiene un enfoque estático, por lo tanto, estas soluciones no pueden ser aplicadas correctamente para datos más complejos, como colecciones de objetos espacio-temporales. En muchos casos, la información guardada en las bases de datos tiene una naturaleza espacial dinámica: además de tener datos espaciales, a menudo se asocian los mismos con información temporal, como marcas de tiempo (time-stamp) ,manejo de versiones, fechas o rango de fechas. En el presente trabajo se propone un método de Clustering Temporal que realiza el proceso de clustering sólo teniendo en cuenta los atributos espaciales, pero para distintos momentos de tiempo (dato aportado por los atributos temporales). Esto nos permite ver cómo varían los clusters durante el transcurso del tiempo, observar la trayectoria de los objetos, y obtener distintas estadísticas sobre el movimiento de clusters y objetos, que no se podrían obtener aplicando un algoritmo de clustering estándar. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22324 |
url |
http://sedici.unlp.edu.ar/handle/10915/22324 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615808333905920 |
score |
13.070432 |