Clustering dinámico con hormigas artificiales

Autores
Ingaramo, Diego Alejandro; Leguizamón, Mario Guillermo; Errecalde, Marcelo Luis
Año de publicación
2005
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La tarea de clustering consiste en la clasificación no supervisada de patrones (observaciones, datos, vectores, etc.) en grupos. Este problema ha sido analizado en varios contextos y por investigadores de distintas disciplinas, reflejando su amplia utilidad. Si bien se han propuesto distintas alternativas para abordar las tareas de clustering, existe un área particularmente interesante y novedosa que ha planteado distintos enfoques bio-inspirados que incluyen los algoritmos genéticos y algoritmos basados en la metáfora del comportamiento de las hormigas. En este trabajo, analizamos la utilización de algoritmos basados en el comportamiento de hormigas en la Minería de Datos, y más específicamente, en la tarea de clustering. Entre estos algoritmos podemos mencionar al AntTree, inspirado en las posibilidades de auto-ensamblaje de las hormigas reales. También se propone una extensión a este algoritmo que incluye la capacidad de desconexión del árbol por parte de las hormigas con el objeto de posicionarse en otro grupo más adecuado. Ésto permite flexibilizar el proceso del descubrimiento de clusters dentro de los datos a analizar. La factibilidad del enfoque propuesto es analizada experimentalmente considerando distintas instancias del problema de clustering. Los resultados obtenidos son comparados con los del algoritmo AntTree original y los de K-means, uno de los algoritmos de clustering tradicional más utilizados.
VI Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Minería de Datos
sistemas inteligentes
Clustering
técnicas bio-inspiradas
Data mining
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/22960

id SEDICI_aabf500dc9efdcc104109ff55214505b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/22960
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Clustering dinámico con hormigas artificialesIngaramo, Diego AlejandroLeguizamón, Mario GuillermoErrecalde, Marcelo LuisCiencias InformáticasMinería de Datossistemas inteligentesClusteringtécnicas bio-inspiradasData miningLa tarea de clustering consiste en la clasificación no supervisada de patrones (observaciones, datos, vectores, etc.) en grupos. Este problema ha sido analizado en varios contextos y por investigadores de distintas disciplinas, reflejando su amplia utilidad. Si bien se han propuesto distintas alternativas para abordar las tareas de clustering, existe un área particularmente interesante y novedosa que ha planteado distintos enfoques bio-inspirados que incluyen los algoritmos genéticos y algoritmos basados en la metáfora del comportamiento de las hormigas. En este trabajo, analizamos la utilización de algoritmos basados en el comportamiento de hormigas en la Minería de Datos, y más específicamente, en la tarea de clustering. Entre estos algoritmos podemos mencionar al AntTree, inspirado en las posibilidades de auto-ensamblaje de las hormigas reales. También se propone una extensión a este algoritmo que incluye la capacidad de desconexión del árbol por parte de las hormigas con el objeto de posicionarse en otro grupo más adecuado. Ésto permite flexibilizar el proceso del descubrimiento de clusters dentro de los datos a analizar. La factibilidad del enfoque propuesto es analizada experimentalmente considerando distintas instancias del problema de clustering. Los resultados obtenidos son comparados con los del algoritmo AntTree original y los de K-means, uno de los algoritmos de clustering tradicional más utilizados.VI Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2005-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22960spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:16Zoai:sedici.unlp.edu.ar:10915/22960Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:16.911SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Clustering dinámico con hormigas artificiales
title Clustering dinámico con hormigas artificiales
spellingShingle Clustering dinámico con hormigas artificiales
Ingaramo, Diego Alejandro
Ciencias Informáticas
Minería de Datos
sistemas inteligentes
Clustering
técnicas bio-inspiradas
Data mining
title_short Clustering dinámico con hormigas artificiales
title_full Clustering dinámico con hormigas artificiales
title_fullStr Clustering dinámico con hormigas artificiales
title_full_unstemmed Clustering dinámico con hormigas artificiales
title_sort Clustering dinámico con hormigas artificiales
dc.creator.none.fl_str_mv Ingaramo, Diego Alejandro
Leguizamón, Mario Guillermo
Errecalde, Marcelo Luis
author Ingaramo, Diego Alejandro
author_facet Ingaramo, Diego Alejandro
Leguizamón, Mario Guillermo
Errecalde, Marcelo Luis
author_role author
author2 Leguizamón, Mario Guillermo
Errecalde, Marcelo Luis
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Minería de Datos
sistemas inteligentes
Clustering
técnicas bio-inspiradas
Data mining
topic Ciencias Informáticas
Minería de Datos
sistemas inteligentes
Clustering
técnicas bio-inspiradas
Data mining
dc.description.none.fl_txt_mv La tarea de clustering consiste en la clasificación no supervisada de patrones (observaciones, datos, vectores, etc.) en grupos. Este problema ha sido analizado en varios contextos y por investigadores de distintas disciplinas, reflejando su amplia utilidad. Si bien se han propuesto distintas alternativas para abordar las tareas de clustering, existe un área particularmente interesante y novedosa que ha planteado distintos enfoques bio-inspirados que incluyen los algoritmos genéticos y algoritmos basados en la metáfora del comportamiento de las hormigas. En este trabajo, analizamos la utilización de algoritmos basados en el comportamiento de hormigas en la Minería de Datos, y más específicamente, en la tarea de clustering. Entre estos algoritmos podemos mencionar al AntTree, inspirado en las posibilidades de auto-ensamblaje de las hormigas reales. También se propone una extensión a este algoritmo que incluye la capacidad de desconexión del árbol por parte de las hormigas con el objeto de posicionarse en otro grupo más adecuado. Ésto permite flexibilizar el proceso del descubrimiento de clusters dentro de los datos a analizar. La factibilidad del enfoque propuesto es analizada experimentalmente considerando distintas instancias del problema de clustering. Los resultados obtenidos son comparados con los del algoritmo AntTree original y los de K-means, uno de los algoritmos de clustering tradicional más utilizados.
VI Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
description La tarea de clustering consiste en la clasificación no supervisada de patrones (observaciones, datos, vectores, etc.) en grupos. Este problema ha sido analizado en varios contextos y por investigadores de distintas disciplinas, reflejando su amplia utilidad. Si bien se han propuesto distintas alternativas para abordar las tareas de clustering, existe un área particularmente interesante y novedosa que ha planteado distintos enfoques bio-inspirados que incluyen los algoritmos genéticos y algoritmos basados en la metáfora del comportamiento de las hormigas. En este trabajo, analizamos la utilización de algoritmos basados en el comportamiento de hormigas en la Minería de Datos, y más específicamente, en la tarea de clustering. Entre estos algoritmos podemos mencionar al AntTree, inspirado en las posibilidades de auto-ensamblaje de las hormigas reales. También se propone una extensión a este algoritmo que incluye la capacidad de desconexión del árbol por parte de las hormigas con el objeto de posicionarse en otro grupo más adecuado. Ésto permite flexibilizar el proceso del descubrimiento de clusters dentro de los datos a analizar. La factibilidad del enfoque propuesto es analizada experimentalmente considerando distintas instancias del problema de clustering. Los resultados obtenidos son comparados con los del algoritmo AntTree original y los de K-means, uno de los algoritmos de clustering tradicional más utilizados.
publishDate 2005
dc.date.none.fl_str_mv 2005-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/22960
url http://sedici.unlp.edu.ar/handle/10915/22960
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615811419865088
score 13.070432