Scientific Production on GPS Trajectory Clustering: A Bibliometric Analysis
- Autores
- Reyes, Gary; Tolozano-Benites, Roberto; Lanzarini, Laura Cristina; Estrebou, César Armando; Fernández Bariviera, Aurelio
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Clustering algorithms or methods for GPS trajectories are in constant evolution due to the interest aroused in part of the scientific community. With the development of clustering algorithms considered traditional, improvements to these algorithms and even unique methods considered as “novel” for science have emerged. This work aimed to analyze the scientific production that exists around the topic “GPS trajectories clustering” by means of bibliometrics. Therefore, a total of 559 articles from the main collection of Scopus were analyzed, initially filtering the generated sample to discard any articles that did not have a direct relationship with the topic to be analyzed. This analysis establishes an ideal environment for other disciplines and researchers since it provides a current state of the trend of the subject of study in their field of research.
Instituto de Investigación en Informática - Materia
-
Informática
trajectory clustering
GPS trajectories
trajectory clustering algorithms
bibliometrics
bibliometry - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/181644
Ver los metadatos del registro completo
id |
SEDICI_0d3794f75439e22a5a0adfd017c3e0cf |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/181644 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Scientific Production on GPS Trajectory Clustering: A Bibliometric AnalysisReyes, GaryTolozano-Benites, RobertoLanzarini, Laura CristinaEstrebou, César ArmandoFernández Bariviera, AurelioInformáticatrajectory clusteringGPS trajectoriestrajectory clustering algorithmsbibliometricsbibliometryClustering algorithms or methods for GPS trajectories are in constant evolution due to the interest aroused in part of the scientific community. With the development of clustering algorithms considered traditional, improvements to these algorithms and even unique methods considered as “novel” for science have emerged. This work aimed to analyze the scientific production that exists around the topic “GPS trajectories clustering” by means of bibliometrics. Therefore, a total of 559 articles from the main collection of Scopus were analyzed, initially filtering the generated sample to discard any articles that did not have a direct relationship with the topic to be analyzed. This analysis establishes an ideal environment for other disciplines and researchers since it provides a current state of the trend of the subject of study in their field of research.Instituto de Investigación en Informática2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/181644enginfo:eu-repo/semantics/altIdentifier/issn/2220-9964,info:eu-repo/semantics/altIdentifier/doi/10.3390/ijgi14040165info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:21:24Zoai:sedici.unlp.edu.ar:10915/181644Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:21:24.971SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Scientific Production on GPS Trajectory Clustering: A Bibliometric Analysis |
title |
Scientific Production on GPS Trajectory Clustering: A Bibliometric Analysis |
spellingShingle |
Scientific Production on GPS Trajectory Clustering: A Bibliometric Analysis Reyes, Gary Informática trajectory clustering GPS trajectories trajectory clustering algorithms bibliometrics bibliometry |
title_short |
Scientific Production on GPS Trajectory Clustering: A Bibliometric Analysis |
title_full |
Scientific Production on GPS Trajectory Clustering: A Bibliometric Analysis |
title_fullStr |
Scientific Production on GPS Trajectory Clustering: A Bibliometric Analysis |
title_full_unstemmed |
Scientific Production on GPS Trajectory Clustering: A Bibliometric Analysis |
title_sort |
Scientific Production on GPS Trajectory Clustering: A Bibliometric Analysis |
dc.creator.none.fl_str_mv |
Reyes, Gary Tolozano-Benites, Roberto Lanzarini, Laura Cristina Estrebou, César Armando Fernández Bariviera, Aurelio |
author |
Reyes, Gary |
author_facet |
Reyes, Gary Tolozano-Benites, Roberto Lanzarini, Laura Cristina Estrebou, César Armando Fernández Bariviera, Aurelio |
author_role |
author |
author2 |
Tolozano-Benites, Roberto Lanzarini, Laura Cristina Estrebou, César Armando Fernández Bariviera, Aurelio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Informática trajectory clustering GPS trajectories trajectory clustering algorithms bibliometrics bibliometry |
topic |
Informática trajectory clustering GPS trajectories trajectory clustering algorithms bibliometrics bibliometry |
dc.description.none.fl_txt_mv |
Clustering algorithms or methods for GPS trajectories are in constant evolution due to the interest aroused in part of the scientific community. With the development of clustering algorithms considered traditional, improvements to these algorithms and even unique methods considered as “novel” for science have emerged. This work aimed to analyze the scientific production that exists around the topic “GPS trajectories clustering” by means of bibliometrics. Therefore, a total of 559 articles from the main collection of Scopus were analyzed, initially filtering the generated sample to discard any articles that did not have a direct relationship with the topic to be analyzed. This analysis establishes an ideal environment for other disciplines and researchers since it provides a current state of the trend of the subject of study in their field of research. Instituto de Investigación en Informática |
description |
Clustering algorithms or methods for GPS trajectories are in constant evolution due to the interest aroused in part of the scientific community. With the development of clustering algorithms considered traditional, improvements to these algorithms and even unique methods considered as “novel” for science have emerged. This work aimed to analyze the scientific production that exists around the topic “GPS trajectories clustering” by means of bibliometrics. Therefore, a total of 559 articles from the main collection of Scopus were analyzed, initially filtering the generated sample to discard any articles that did not have a direct relationship with the topic to be analyzed. This analysis establishes an ideal environment for other disciplines and researchers since it provides a current state of the trend of the subject of study in their field of research. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/181644 |
url |
http://sedici.unlp.edu.ar/handle/10915/181644 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2220-9964, info:eu-repo/semantics/altIdentifier/doi/10.3390/ijgi14040165 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260718819213312 |
score |
13.13397 |