A data mining approach to computational taxonomy
- Autores
- Perichinsky, Gregorio; García Martínez, Ramón
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This study investigates an approach of knowledge discovery and data mining in insufficient databases. An application of Computational Taxonomy analysis demonstrates that the approach is effective in such a data mining process. The approach is characterized by the use ot both the second type of domain knowledge and visualization. This type of knowledge is newly defined in this study and deduced from supposition about background situations of the domain. The supposition is triggered by strong intuition about the extracted features in a recurrent process of data mining. This type of domain knowledge is useful not only for discovering interesting knowledge but al so tor guiding the subsequent search for more explicit and interesting knowledge. The visualization is very useful for triggering the supposition.
Eje: Ingeniería de software y base de datos
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Computational Taxonomy
Taxonomy
Insufficient database
Knowledge discovery
Data mining
base de datos
Clustering - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22154
Ver los metadatos del registro completo
id |
SEDICI_126171549fc15afd904c4cbe241a5c3b |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22154 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A data mining approach to computational taxonomyPerichinsky, GregorioGarcía Martínez, RamónCiencias InformáticasComputational TaxonomyTaxonomyInsufficient databaseKnowledge discoveryData miningbase de datosClusteringThis study investigates an approach of knowledge discovery and data mining in insufficient databases. An application of Computational Taxonomy analysis demonstrates that the approach is effective in such a data mining process. The approach is characterized by the use ot both the second type of domain knowledge and visualization. This type of knowledge is newly defined in this study and deduced from supposition about background situations of the domain. The supposition is triggered by strong intuition about the extracted features in a recurrent process of data mining. This type of domain knowledge is useful not only for discovering interesting knowledge but al so tor guiding the subsequent search for more explicit and interesting knowledge. The visualization is very useful for triggering the supposition.Eje: Ingeniería de software y base de datosRed de Universidades con Carreras en Informática (RedUNCI)2000-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf107-110http://sedici.unlp.edu.ar/handle/10915/22154enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:33Zoai:sedici.unlp.edu.ar:10915/22154Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:33.6SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A data mining approach to computational taxonomy |
title |
A data mining approach to computational taxonomy |
spellingShingle |
A data mining approach to computational taxonomy Perichinsky, Gregorio Ciencias Informáticas Computational Taxonomy Taxonomy Insufficient database Knowledge discovery Data mining base de datos Clustering |
title_short |
A data mining approach to computational taxonomy |
title_full |
A data mining approach to computational taxonomy |
title_fullStr |
A data mining approach to computational taxonomy |
title_full_unstemmed |
A data mining approach to computational taxonomy |
title_sort |
A data mining approach to computational taxonomy |
dc.creator.none.fl_str_mv |
Perichinsky, Gregorio García Martínez, Ramón |
author |
Perichinsky, Gregorio |
author_facet |
Perichinsky, Gregorio García Martínez, Ramón |
author_role |
author |
author2 |
García Martínez, Ramón |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Computational Taxonomy Taxonomy Insufficient database Knowledge discovery Data mining base de datos Clustering |
topic |
Ciencias Informáticas Computational Taxonomy Taxonomy Insufficient database Knowledge discovery Data mining base de datos Clustering |
dc.description.none.fl_txt_mv |
This study investigates an approach of knowledge discovery and data mining in insufficient databases. An application of Computational Taxonomy analysis demonstrates that the approach is effective in such a data mining process. The approach is characterized by the use ot both the second type of domain knowledge and visualization. This type of knowledge is newly defined in this study and deduced from supposition about background situations of the domain. The supposition is triggered by strong intuition about the extracted features in a recurrent process of data mining. This type of domain knowledge is useful not only for discovering interesting knowledge but al so tor guiding the subsequent search for more explicit and interesting knowledge. The visualization is very useful for triggering the supposition. Eje: Ingeniería de software y base de datos Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This study investigates an approach of knowledge discovery and data mining in insufficient databases. An application of Computational Taxonomy analysis demonstrates that the approach is effective in such a data mining process. The approach is characterized by the use ot both the second type of domain knowledge and visualization. This type of knowledge is newly defined in this study and deduced from supposition about background situations of the domain. The supposition is triggered by strong intuition about the extracted features in a recurrent process of data mining. This type of domain knowledge is useful not only for discovering interesting knowledge but al so tor guiding the subsequent search for more explicit and interesting knowledge. The visualization is very useful for triggering the supposition. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22154 |
url |
http://sedici.unlp.edu.ar/handle/10915/22154 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 107-110 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063901796466689 |
score |
13.22299 |