Noise Based Approach for the Detection of Adversarial Examples

Autores
Kloster, Matias Alejandro; Cúñale, Ariel Hernán; Mato, Germán
Año de publicación
2020
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
We propose a new method for detecting adversarial examples based on a stochastic approach. An example is presented to the network several times and classified as adversarial if the fraction of times the output label is different from the label generated by the deterministic network is above some threshold value. We analyze the performance of the method for three attack methods (DeepFool, Fast Gradient Sign Method and norm 2 Carlini Wagner) and two datasets (MNIST and CIFAR-10). We find that our approach works best for stronger attacks such as DeepFool and CW2, and could be used as part of a scheme where several methods are applied simultaneously in order to estimate if a given input is adversarial or not.
Sociedad Argentina de Informática
Materia
Ciencias Informáticas
Adversarial examples
Method for detecting
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/116415

id SEDICI_b7e9d1b7ebaabdff49722266b40ab1fd
oai_identifier_str oai:sedici.unlp.edu.ar:10915/116415
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Noise Based Approach for the Detection of Adversarial ExamplesKloster, Matias AlejandroCúñale, Ariel HernánMato, GermánCiencias InformáticasAdversarial examplesMethod for detectingWe propose a new method for detecting adversarial examples based on a stochastic approach. An example is presented to the network several times and classified as adversarial if the fraction of times the output label is different from the label generated by the deterministic network is above some threshold value. We analyze the performance of the method for three attack methods (DeepFool, Fast Gradient Sign Method and norm 2 Carlini Wagner) and two datasets (MNIST and CIFAR-10). We find that our approach works best for stronger attacks such as DeepFool and CW2, and could be used as part of a scheme where several methods are applied simultaneously in order to estimate if a given input is adversarial or not.Sociedad Argentina de Informática2020-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf25-38http://sedici.unlp.edu.ar/handle/10915/116415enginfo:eu-repo/semantics/altIdentifier/url/http://49jaiio.sadio.org.ar/pdfs/agranda/AGRANDA-04.pdfinfo:eu-repo/semantics/altIdentifier/issn/2683-8966info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:19:03Zoai:sedici.unlp.edu.ar:10915/116415Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:19:03.934SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Noise Based Approach for the Detection of Adversarial Examples
title Noise Based Approach for the Detection of Adversarial Examples
spellingShingle Noise Based Approach for the Detection of Adversarial Examples
Kloster, Matias Alejandro
Ciencias Informáticas
Adversarial examples
Method for detecting
title_short Noise Based Approach for the Detection of Adversarial Examples
title_full Noise Based Approach for the Detection of Adversarial Examples
title_fullStr Noise Based Approach for the Detection of Adversarial Examples
title_full_unstemmed Noise Based Approach for the Detection of Adversarial Examples
title_sort Noise Based Approach for the Detection of Adversarial Examples
dc.creator.none.fl_str_mv Kloster, Matias Alejandro
Cúñale, Ariel Hernán
Mato, Germán
author Kloster, Matias Alejandro
author_facet Kloster, Matias Alejandro
Cúñale, Ariel Hernán
Mato, Germán
author_role author
author2 Cúñale, Ariel Hernán
Mato, Germán
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Adversarial examples
Method for detecting
topic Ciencias Informáticas
Adversarial examples
Method for detecting
dc.description.none.fl_txt_mv We propose a new method for detecting adversarial examples based on a stochastic approach. An example is presented to the network several times and classified as adversarial if the fraction of times the output label is different from the label generated by the deterministic network is above some threshold value. We analyze the performance of the method for three attack methods (DeepFool, Fast Gradient Sign Method and norm 2 Carlini Wagner) and two datasets (MNIST and CIFAR-10). We find that our approach works best for stronger attacks such as DeepFool and CW2, and could be used as part of a scheme where several methods are applied simultaneously in order to estimate if a given input is adversarial or not.
Sociedad Argentina de Informática
description We propose a new method for detecting adversarial examples based on a stochastic approach. An example is presented to the network several times and classified as adversarial if the fraction of times the output label is different from the label generated by the deterministic network is above some threshold value. We analyze the performance of the method for three attack methods (DeepFool, Fast Gradient Sign Method and norm 2 Carlini Wagner) and two datasets (MNIST and CIFAR-10). We find that our approach works best for stronger attacks such as DeepFool and CW2, and could be used as part of a scheme where several methods are applied simultaneously in order to estimate if a given input is adversarial or not.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/116415
url http://sedici.unlp.edu.ar/handle/10915/116415
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://49jaiio.sadio.org.ar/pdfs/agranda/AGRANDA-04.pdf
info:eu-repo/semantics/altIdentifier/issn/2683-8966
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/3.0/
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
dc.format.none.fl_str_mv application/pdf
25-38
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064248619270144
score 13.22299