Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance

Autores
Bai, Mingyuan; Huang, Wei; Li, Tenghui; Wang, Andong; Gao, Junbin; Caiafa, César Federico; Zhao, Qibin
Año de publicación
2024
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In adversarial defense, adversarial purification can be viewed as a special generation task with the purpose to remove adversarial attacks and dif- fusion models excel in adversarial purification for their strong generative power. With different predetermined generation requirements, various types of guidance have been proposed, but few of them focuses on adversarial purification. In this work, we propose to guide diffusion mod- els for adversarial purification using contrastive guidance. We theoretically derive the proper noise level added in the forward process diffu- sion models for adversarial purification from a feature learning perspective. For the reverse pro- cess, it is implied that the role of contrastive loss guidance is to facilitate the evolution towards the signal direction. From the theoretical findings and implications, we design the forward process with the proper amount of Gaussian noise added and the reverse process with the gradient of contrastive loss as the guidance of diffusion models for adversarial purification. Empirically, exten- sive experiments on CIFAR-10, CIFAR-100, the German Traffic Sign Recognition Benchmark and ImageNet datasets with ResNet and WideResNet classifiers show that our method outperforms most of current adversarial training and adversarial purification methods by a large improvement.
Fil: Bai, Mingyuan. Riken. Center of Advanced Intelligence Project; Japón
Fil: Huang, Wei. Riken. Center of Advanced Intelligence Project; Japón
Fil: Li, Tenghui. Riken. Center of Advanced Intelligence Project; Japón
Fil: Wang, Andong. Riken. Center of Advanced Intelligence Project; Japón
Fil: Gao, Junbin. The University of Sydney; Australia
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Zhao, Qibin. Riken. Center of Advanced Intelligence Project; Japón
41st International Conference on Machine Learning
Viena
Austria
Carnegie Mellen University
Materia
stable diffusion
adversarial attacks
purification
artificial intelligence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/241923

id CONICETDig_2d180a78b2ffc31f7ff7127c50435f0e
oai_identifier_str oai:ri.conicet.gov.ar:11336/241923
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Diffusion Models Demand Contrastive Guidance for Adversarial Purification to AdvanceBai, MingyuanHuang, WeiLi, TenghuiWang, AndongGao, JunbinCaiafa, César FedericoZhao, Qibinstable diffusionadversarial attackspurificationartificial intelligencehttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In adversarial defense, adversarial purification can be viewed as a special generation task with the purpose to remove adversarial attacks and dif- fusion models excel in adversarial purification for their strong generative power. With different predetermined generation requirements, various types of guidance have been proposed, but few of them focuses on adversarial purification. In this work, we propose to guide diffusion mod- els for adversarial purification using contrastive guidance. We theoretically derive the proper noise level added in the forward process diffu- sion models for adversarial purification from a feature learning perspective. For the reverse pro- cess, it is implied that the role of contrastive loss guidance is to facilitate the evolution towards the signal direction. From the theoretical findings and implications, we design the forward process with the proper amount of Gaussian noise added and the reverse process with the gradient of contrastive loss as the guidance of diffusion models for adversarial purification. Empirically, exten- sive experiments on CIFAR-10, CIFAR-100, the German Traffic Sign Recognition Benchmark and ImageNet datasets with ResNet and WideResNet classifiers show that our method outperforms most of current adversarial training and adversarial purification methods by a large improvement.Fil: Bai, Mingyuan. Riken. Center of Advanced Intelligence Project; JapónFil: Huang, Wei. Riken. Center of Advanced Intelligence Project; JapónFil: Li, Tenghui. Riken. Center of Advanced Intelligence Project; JapónFil: Wang, Andong. Riken. Center of Advanced Intelligence Project; JapónFil: Gao, Junbin. The University of Sydney; AustraliaFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Zhao, Qibin. Riken. Center of Advanced Intelligence Project; Japón41st International Conference on Machine LearningVienaAustriaCarnegie Mellen UniversityMLR pressSalakhutdino, Ruslan2024info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241923Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance; 41st International Conference on Machine Learning; Viena; Austria; 2024; 1-172640-3498CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://icml.ccinfo:eu-repo/semantics/altIdentifier/url/https://icml.cc/virtual/2024/poster/35110info:eu-repo/semantics/altIdentifier/url/https://proceedings.mlr.press/v235/bai24b.htmlInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:41Zoai:ri.conicet.gov.ar:11336/241923instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:42.191CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance
title Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance
spellingShingle Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance
Bai, Mingyuan
stable diffusion
adversarial attacks
purification
artificial intelligence
title_short Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance
title_full Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance
title_fullStr Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance
title_full_unstemmed Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance
title_sort Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance
dc.creator.none.fl_str_mv Bai, Mingyuan
Huang, Wei
Li, Tenghui
Wang, Andong
Gao, Junbin
Caiafa, César Federico
Zhao, Qibin
author Bai, Mingyuan
author_facet Bai, Mingyuan
Huang, Wei
Li, Tenghui
Wang, Andong
Gao, Junbin
Caiafa, César Federico
Zhao, Qibin
author_role author
author2 Huang, Wei
Li, Tenghui
Wang, Andong
Gao, Junbin
Caiafa, César Federico
Zhao, Qibin
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Salakhutdino, Ruslan
dc.subject.none.fl_str_mv stable diffusion
adversarial attacks
purification
artificial intelligence
topic stable diffusion
adversarial attacks
purification
artificial intelligence
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In adversarial defense, adversarial purification can be viewed as a special generation task with the purpose to remove adversarial attacks and dif- fusion models excel in adversarial purification for their strong generative power. With different predetermined generation requirements, various types of guidance have been proposed, but few of them focuses on adversarial purification. In this work, we propose to guide diffusion mod- els for adversarial purification using contrastive guidance. We theoretically derive the proper noise level added in the forward process diffu- sion models for adversarial purification from a feature learning perspective. For the reverse pro- cess, it is implied that the role of contrastive loss guidance is to facilitate the evolution towards the signal direction. From the theoretical findings and implications, we design the forward process with the proper amount of Gaussian noise added and the reverse process with the gradient of contrastive loss as the guidance of diffusion models for adversarial purification. Empirically, exten- sive experiments on CIFAR-10, CIFAR-100, the German Traffic Sign Recognition Benchmark and ImageNet datasets with ResNet and WideResNet classifiers show that our method outperforms most of current adversarial training and adversarial purification methods by a large improvement.
Fil: Bai, Mingyuan. Riken. Center of Advanced Intelligence Project; Japón
Fil: Huang, Wei. Riken. Center of Advanced Intelligence Project; Japón
Fil: Li, Tenghui. Riken. Center of Advanced Intelligence Project; Japón
Fil: Wang, Andong. Riken. Center of Advanced Intelligence Project; Japón
Fil: Gao, Junbin. The University of Sydney; Australia
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Zhao, Qibin. Riken. Center of Advanced Intelligence Project; Japón
41st International Conference on Machine Learning
Viena
Austria
Carnegie Mellen University
description In adversarial defense, adversarial purification can be viewed as a special generation task with the purpose to remove adversarial attacks and dif- fusion models excel in adversarial purification for their strong generative power. With different predetermined generation requirements, various types of guidance have been proposed, but few of them focuses on adversarial purification. In this work, we propose to guide diffusion mod- els for adversarial purification using contrastive guidance. We theoretically derive the proper noise level added in the forward process diffu- sion models for adversarial purification from a feature learning perspective. For the reverse pro- cess, it is implied that the role of contrastive loss guidance is to facilitate the evolution towards the signal direction. From the theoretical findings and implications, we design the forward process with the proper amount of Gaussian noise added and the reverse process with the gradient of contrastive loss as the guidance of diffusion models for adversarial purification. Empirically, exten- sive experiments on CIFAR-10, CIFAR-100, the German Traffic Sign Recognition Benchmark and ImageNet datasets with ResNet and WideResNet classifiers show that our method outperforms most of current adversarial training and adversarial purification methods by a large improvement.
publishDate 2024
dc.date.none.fl_str_mv 2024
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Conferencia
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/241923
Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance; 41st International Conference on Machine Learning; Viena; Austria; 2024; 1-17
2640-3498
CONICET Digital
CONICET
url http://hdl.handle.net/11336/241923
identifier_str_mv Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance; 41st International Conference on Machine Learning; Viena; Austria; 2024; 1-17
2640-3498
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://icml.cc
info:eu-repo/semantics/altIdentifier/url/https://icml.cc/virtual/2024/poster/35110
info:eu-repo/semantics/altIdentifier/url/https://proceedings.mlr.press/v235/bai24b.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv MLR press
publisher.none.fl_str_mv MLR press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613813651898368
score 13.069144