First Steps towards Data-Driven Adversarial Deduplication

Autores
Paredes, José Nicolás; Simari, Gerardo; Martinez, Maria Vanina; Falappa, Marcelo Alejandro
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In traditional databases, the entity resolution problem (which is also known as deduplication)refers to the task of mapping multiple manifestations of virtual objects totheir corresponding real-worldentities. When addressing this problem, in both theory and practice, it is widely assumed that suchsets of virtual objects appear as the result of clerical errors, transliterations, missing or updatedattributes, abbreviations, and so forth. In this paper, we address this problem under the assumptionthat this situation is caused by malicious actors operating in domains in which they do not wishto be identified, such as hacker forums and markets in which the participants are motivated toremain semi-anonymous (though they wish to keep their true identities secret, they find it useful forcustomers to identify their products and services). We are therefore in the presence of a different, andeven more challenging, problem that we refer to as adversarial deduplication. In this paper, we studythis problem via examples that arise from real-world data on malicious hacker forums and marketsarising from collaborations with a cyber threat intelligence company focusing on understanding thiskind of behavior. We argue that it is very difficult—if not impossible—to find ground truth data onwhich to build solutions to this problem, and develop a set of preliminary experiments based ontraining machine learning classifiers that leverage text analysis to detect potential cases of duplicateentities. Our results are encouraging as a first step towards building tools that human analysts canuse to enhance their capabilities towards fighting cyber threats.
Fil: Paredes, José Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Arizona State University; Estados Unidos
Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Materia
ADVERSARIAL DEDUPLICATION
CYBER THREAT INTELLIGENCE
MACHINE LEARNING CLASSIFIERS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/89020

id CONICETDig_1ac1c207aef6892a3ea8e8f33050dcc3
oai_identifier_str oai:ri.conicet.gov.ar:11336/89020
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling First Steps towards Data-Driven Adversarial DeduplicationParedes, José NicolásSimari, GerardoMartinez, Maria VaninaFalappa, Marcelo AlejandroADVERSARIAL DEDUPLICATIONCYBER THREAT INTELLIGENCEMACHINE LEARNING CLASSIFIERShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In traditional databases, the entity resolution problem (which is also known as deduplication)refers to the task of mapping multiple manifestations of virtual objects totheir corresponding real-worldentities. When addressing this problem, in both theory and practice, it is widely assumed that suchsets of virtual objects appear as the result of clerical errors, transliterations, missing or updatedattributes, abbreviations, and so forth. In this paper, we address this problem under the assumptionthat this situation is caused by malicious actors operating in domains in which they do not wishto be identified, such as hacker forums and markets in which the participants are motivated toremain semi-anonymous (though they wish to keep their true identities secret, they find it useful forcustomers to identify their products and services). We are therefore in the presence of a different, andeven more challenging, problem that we refer to as adversarial deduplication. In this paper, we studythis problem via examples that arise from real-world data on malicious hacker forums and marketsarising from collaborations with a cyber threat intelligence company focusing on understanding thiskind of behavior. We argue that it is very difficult—if not impossible—to find ground truth data onwhich to build solutions to this problem, and develop a set of preliminary experiments based ontraining machine learning classifiers that leverage text analysis to detect potential cases of duplicateentities. Our results are encouraging as a first step towards building tools that human analysts canuse to enhance their capabilities towards fighting cyber threats.Fil: Paredes, José Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Arizona State University; Estados UnidosFil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaMDPI AG2018-07-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89020Paredes, José Nicolás; Simari, Gerardo; Martinez, Maria Vanina; Falappa, Marcelo Alejandro; First Steps towards Data-Driven Adversarial Deduplication; MDPI AG; Information (Switzerland); 9; 8; 27-7-2018; 189-2042078-2489CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2078-2489/9/8/189info:eu-repo/semantics/altIdentifier/doi/10.3390/info9080189info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:59Zoai:ri.conicet.gov.ar:11336/89020instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:11:00.038CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv First Steps towards Data-Driven Adversarial Deduplication
title First Steps towards Data-Driven Adversarial Deduplication
spellingShingle First Steps towards Data-Driven Adversarial Deduplication
Paredes, José Nicolás
ADVERSARIAL DEDUPLICATION
CYBER THREAT INTELLIGENCE
MACHINE LEARNING CLASSIFIERS
title_short First Steps towards Data-Driven Adversarial Deduplication
title_full First Steps towards Data-Driven Adversarial Deduplication
title_fullStr First Steps towards Data-Driven Adversarial Deduplication
title_full_unstemmed First Steps towards Data-Driven Adversarial Deduplication
title_sort First Steps towards Data-Driven Adversarial Deduplication
dc.creator.none.fl_str_mv Paredes, José Nicolás
Simari, Gerardo
Martinez, Maria Vanina
Falappa, Marcelo Alejandro
author Paredes, José Nicolás
author_facet Paredes, José Nicolás
Simari, Gerardo
Martinez, Maria Vanina
Falappa, Marcelo Alejandro
author_role author
author2 Simari, Gerardo
Martinez, Maria Vanina
Falappa, Marcelo Alejandro
author2_role author
author
author
dc.subject.none.fl_str_mv ADVERSARIAL DEDUPLICATION
CYBER THREAT INTELLIGENCE
MACHINE LEARNING CLASSIFIERS
topic ADVERSARIAL DEDUPLICATION
CYBER THREAT INTELLIGENCE
MACHINE LEARNING CLASSIFIERS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In traditional databases, the entity resolution problem (which is also known as deduplication)refers to the task of mapping multiple manifestations of virtual objects totheir corresponding real-worldentities. When addressing this problem, in both theory and practice, it is widely assumed that suchsets of virtual objects appear as the result of clerical errors, transliterations, missing or updatedattributes, abbreviations, and so forth. In this paper, we address this problem under the assumptionthat this situation is caused by malicious actors operating in domains in which they do not wishto be identified, such as hacker forums and markets in which the participants are motivated toremain semi-anonymous (though they wish to keep their true identities secret, they find it useful forcustomers to identify their products and services). We are therefore in the presence of a different, andeven more challenging, problem that we refer to as adversarial deduplication. In this paper, we studythis problem via examples that arise from real-world data on malicious hacker forums and marketsarising from collaborations with a cyber threat intelligence company focusing on understanding thiskind of behavior. We argue that it is very difficult—if not impossible—to find ground truth data onwhich to build solutions to this problem, and develop a set of preliminary experiments based ontraining machine learning classifiers that leverage text analysis to detect potential cases of duplicateentities. Our results are encouraging as a first step towards building tools that human analysts canuse to enhance their capabilities towards fighting cyber threats.
Fil: Paredes, José Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Simari, Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Arizona State University; Estados Unidos
Fil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
description In traditional databases, the entity resolution problem (which is also known as deduplication)refers to the task of mapping multiple manifestations of virtual objects totheir corresponding real-worldentities. When addressing this problem, in both theory and practice, it is widely assumed that suchsets of virtual objects appear as the result of clerical errors, transliterations, missing or updatedattributes, abbreviations, and so forth. In this paper, we address this problem under the assumptionthat this situation is caused by malicious actors operating in domains in which they do not wishto be identified, such as hacker forums and markets in which the participants are motivated toremain semi-anonymous (though they wish to keep their true identities secret, they find it useful forcustomers to identify their products and services). We are therefore in the presence of a different, andeven more challenging, problem that we refer to as adversarial deduplication. In this paper, we studythis problem via examples that arise from real-world data on malicious hacker forums and marketsarising from collaborations with a cyber threat intelligence company focusing on understanding thiskind of behavior. We argue that it is very difficult—if not impossible—to find ground truth data onwhich to build solutions to this problem, and develop a set of preliminary experiments based ontraining machine learning classifiers that leverage text analysis to detect potential cases of duplicateentities. Our results are encouraging as a first step towards building tools that human analysts canuse to enhance their capabilities towards fighting cyber threats.
publishDate 2018
dc.date.none.fl_str_mv 2018-07-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/89020
Paredes, José Nicolás; Simari, Gerardo; Martinez, Maria Vanina; Falappa, Marcelo Alejandro; First Steps towards Data-Driven Adversarial Deduplication; MDPI AG; Information (Switzerland); 9; 8; 27-7-2018; 189-204
2078-2489
CONICET Digital
CONICET
url http://hdl.handle.net/11336/89020
identifier_str_mv Paredes, José Nicolás; Simari, Gerardo; Martinez, Maria Vanina; Falappa, Marcelo Alejandro; First Steps towards Data-Driven Adversarial Deduplication; MDPI AG; Information (Switzerland); 9; 8; 27-7-2018; 189-204
2078-2489
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2078-2489/9/8/189
info:eu-repo/semantics/altIdentifier/doi/10.3390/info9080189
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614004170817536
score 13.069144