Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

Autores
Ahmadi-Asl, Salman; Caiafa, Cesar Federico; Cichocki, Andrzej; Huy Phan, Anh; Tanaka, Toshihisa; Oseledet, Ivan; Wang, Jun
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends state-of-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations. We discuss several possible generalizations of the CMA to tensors, including CTAs: based on fiber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance.
Instituto Argentino de Radioastronomía
Materia
Ingeniería
CUR algorithms
Cross approximation
Tensor decomposition
Tubal SVD
Randomization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/129981

id SEDICI_b566f100419c879c578280efd67cf627
oai_identifier_str oai:sedici.unlp.edu.ar:10915/129981
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Cross Tensor Approximation Methods for Compression and Dimensionality ReductionAhmadi-Asl, SalmanCaiafa, Cesar FedericoCichocki, AndrzejHuy Phan, AnhTanaka, ToshihisaOseledet, IvanWang, JunIngenieríaCUR algorithmsCross approximationTensor decompositionTubal SVDRandomizationCross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends state-of-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations. We discuss several possible generalizations of the CMA to tensors, including CTAs: based on fiber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance.Instituto Argentino de Radioastronomía2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf150809 - 150838http://sedici.unlp.edu.ar/handle/10915/129981enginfo:eu-repo/semantics/altIdentifier/issn/2169-3536info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2021.3125069info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:24:30Zoai:sedici.unlp.edu.ar:10915/129981Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:24:31.22SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Cross Tensor Approximation Methods for Compression and Dimensionality Reduction
title Cross Tensor Approximation Methods for Compression and Dimensionality Reduction
spellingShingle Cross Tensor Approximation Methods for Compression and Dimensionality Reduction
Ahmadi-Asl, Salman
Ingeniería
CUR algorithms
Cross approximation
Tensor decomposition
Tubal SVD
Randomization
title_short Cross Tensor Approximation Methods for Compression and Dimensionality Reduction
title_full Cross Tensor Approximation Methods for Compression and Dimensionality Reduction
title_fullStr Cross Tensor Approximation Methods for Compression and Dimensionality Reduction
title_full_unstemmed Cross Tensor Approximation Methods for Compression and Dimensionality Reduction
title_sort Cross Tensor Approximation Methods for Compression and Dimensionality Reduction
dc.creator.none.fl_str_mv Ahmadi-Asl, Salman
Caiafa, Cesar Federico
Cichocki, Andrzej
Huy Phan, Anh
Tanaka, Toshihisa
Oseledet, Ivan
Wang, Jun
author Ahmadi-Asl, Salman
author_facet Ahmadi-Asl, Salman
Caiafa, Cesar Federico
Cichocki, Andrzej
Huy Phan, Anh
Tanaka, Toshihisa
Oseledet, Ivan
Wang, Jun
author_role author
author2 Caiafa, Cesar Federico
Cichocki, Andrzej
Huy Phan, Anh
Tanaka, Toshihisa
Oseledet, Ivan
Wang, Jun
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Ingeniería
CUR algorithms
Cross approximation
Tensor decomposition
Tubal SVD
Randomization
topic Ingeniería
CUR algorithms
Cross approximation
Tensor decomposition
Tubal SVD
Randomization
dc.description.none.fl_txt_mv Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends state-of-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations. We discuss several possible generalizations of the CMA to tensors, including CTAs: based on fiber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance.
Instituto Argentino de Radioastronomía
description Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends state-of-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations. We discuss several possible generalizations of the CMA to tensors, including CTAs: based on fiber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/129981
url http://sedici.unlp.edu.ar/handle/10915/129981
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2169-3536
info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2021.3125069
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
150809 - 150838
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064298918412288
score 13.22299