Cross Tensor Approximation Methods for Compression and Dimensionality Reduction
- Autores
- Ahmadi-Asl, Salman; Caiafa, Cesar Federico; Cichocki, Andrzej; Huy Phan, Anh; Tanaka, Toshihisa; Oseledet, Ivan; Wang, Jun
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends state-of-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations. We discuss several possible generalizations of the CMA to tensors, including CTAs: based on fiber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance.
Instituto Argentino de Radioastronomía - Materia
-
Ingeniería
CUR algorithms
Cross approximation
Tensor decomposition
Tubal SVD
Randomization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/129981
Ver los metadatos del registro completo
id |
SEDICI_b566f100419c879c578280efd67cf627 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/129981 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Cross Tensor Approximation Methods for Compression and Dimensionality ReductionAhmadi-Asl, SalmanCaiafa, Cesar FedericoCichocki, AndrzejHuy Phan, AnhTanaka, ToshihisaOseledet, IvanWang, JunIngenieríaCUR algorithmsCross approximationTensor decompositionTubal SVDRandomizationCross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends state-of-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations. We discuss several possible generalizations of the CMA to tensors, including CTAs: based on fiber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance.Instituto Argentino de Radioastronomía2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf150809 - 150838http://sedici.unlp.edu.ar/handle/10915/129981enginfo:eu-repo/semantics/altIdentifier/issn/2169-3536info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2021.3125069info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:24:30Zoai:sedici.unlp.edu.ar:10915/129981Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:24:31.22SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction |
title |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction |
spellingShingle |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction Ahmadi-Asl, Salman Ingeniería CUR algorithms Cross approximation Tensor decomposition Tubal SVD Randomization |
title_short |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction |
title_full |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction |
title_fullStr |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction |
title_full_unstemmed |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction |
title_sort |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction |
dc.creator.none.fl_str_mv |
Ahmadi-Asl, Salman Caiafa, Cesar Federico Cichocki, Andrzej Huy Phan, Anh Tanaka, Toshihisa Oseledet, Ivan Wang, Jun |
author |
Ahmadi-Asl, Salman |
author_facet |
Ahmadi-Asl, Salman Caiafa, Cesar Federico Cichocki, Andrzej Huy Phan, Anh Tanaka, Toshihisa Oseledet, Ivan Wang, Jun |
author_role |
author |
author2 |
Caiafa, Cesar Federico Cichocki, Andrzej Huy Phan, Anh Tanaka, Toshihisa Oseledet, Ivan Wang, Jun |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Ingeniería CUR algorithms Cross approximation Tensor decomposition Tubal SVD Randomization |
topic |
Ingeniería CUR algorithms Cross approximation Tensor decomposition Tubal SVD Randomization |
dc.description.none.fl_txt_mv |
Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends state-of-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations. We discuss several possible generalizations of the CMA to tensors, including CTAs: based on fiber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance. Instituto Argentino de Radioastronomía |
description |
Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends state-of-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations. We discuss several possible generalizations of the CMA to tensors, including CTAs: based on fiber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/129981 |
url |
http://sedici.unlp.edu.ar/handle/10915/129981 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2169-3536 info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2021.3125069 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 150809 - 150838 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064298918412288 |
score |
13.22299 |