Cross Tensor Approximation Methods for Compression and Dimensionality Reduction
- Autores
- Ahmadi Asl, Salman; Caiafa, César Federico; Cichocki, Andrzej; Phan, Anh Huy; Tanaka, Toshihisa; Oseledets, Ivan; Wang, Jun
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends stateof-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations.We discuss several possible generalizations of the CMA to tensors, including CTAs: based on ber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance.
Fil: Ahmadi Asl, Salman. Skoltech - Skolkovo Institute Of Science And Technology; Rusia
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Cichocki, Andrzej. Skolkovo Institute of Science and Technology; Rusia
Fil: Phan, Anh Huy. Skolkovo Institute of Science and Technology; Rusia
Fil: Tanaka, Toshihisa. Agricultural University Of Tokyo; Japón
Fil: Oseledets, Ivan. Skolkovo Institute of Science and Technology; Rusia
Fil: Wang, Jun. Skolkovo Institute of Science and Technology; Rusia - Materia
-
CUR algorithms
cross approximations
tensor decomposition
randomization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/149081
Ver los metadatos del registro completo
id |
CONICETDig_8a41259c116101ea49ab5c299058dc08 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/149081 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cross Tensor Approximation Methods for Compression and Dimensionality ReductionAhmadi Asl, SalmanCaiafa, César FedericoCichocki, AndrzejPhan, Anh HuyTanaka, ToshihisaOseledets, IvanWang, JunCUR algorithmscross approximationstensor decompositionrandomizationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends stateof-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations.We discuss several possible generalizations of the CMA to tensors, including CTAs: based on ber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance.Fil: Ahmadi Asl, Salman. Skoltech - Skolkovo Institute Of Science And Technology; RusiaFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Cichocki, Andrzej. Skolkovo Institute of Science and Technology; RusiaFil: Phan, Anh Huy. Skolkovo Institute of Science and Technology; RusiaFil: Tanaka, Toshihisa. Agricultural University Of Tokyo; JapónFil: Oseledets, Ivan. Skolkovo Institute of Science and Technology; RusiaFil: Wang, Jun. Skolkovo Institute of Science and Technology; RusiaIEEE2021-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/149081Ahmadi Asl, Salman; Caiafa, César Federico; Cichocki, Andrzej; Phan, Anh Huy; Tanaka, Toshihisa; et al.; Cross Tensor Approximation Methods for Compression and Dimensionality Reduction; IEEE; IEEE Access; 9; 11-2021; 150809-1508382169-35362169-3536CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9599673?source=authoralertinfo:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2021.3125069info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:42:03Zoai:ri.conicet.gov.ar:11336/149081instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:42:03.502CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction |
title |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction |
spellingShingle |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction Ahmadi Asl, Salman CUR algorithms cross approximations tensor decomposition randomization |
title_short |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction |
title_full |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction |
title_fullStr |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction |
title_full_unstemmed |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction |
title_sort |
Cross Tensor Approximation Methods for Compression and Dimensionality Reduction |
dc.creator.none.fl_str_mv |
Ahmadi Asl, Salman Caiafa, César Federico Cichocki, Andrzej Phan, Anh Huy Tanaka, Toshihisa Oseledets, Ivan Wang, Jun |
author |
Ahmadi Asl, Salman |
author_facet |
Ahmadi Asl, Salman Caiafa, César Federico Cichocki, Andrzej Phan, Anh Huy Tanaka, Toshihisa Oseledets, Ivan Wang, Jun |
author_role |
author |
author2 |
Caiafa, César Federico Cichocki, Andrzej Phan, Anh Huy Tanaka, Toshihisa Oseledets, Ivan Wang, Jun |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
CUR algorithms cross approximations tensor decomposition randomization |
topic |
CUR algorithms cross approximations tensor decomposition randomization |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends stateof-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations.We discuss several possible generalizations of the CMA to tensors, including CTAs: based on ber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance. Fil: Ahmadi Asl, Salman. Skoltech - Skolkovo Institute Of Science And Technology; Rusia Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina Fil: Cichocki, Andrzej. Skolkovo Institute of Science and Technology; Rusia Fil: Phan, Anh Huy. Skolkovo Institute of Science and Technology; Rusia Fil: Tanaka, Toshihisa. Agricultural University Of Tokyo; Japón Fil: Oseledets, Ivan. Skolkovo Institute of Science and Technology; Rusia Fil: Wang, Jun. Skolkovo Institute of Science and Technology; Rusia |
description |
Cross Tensor Approximation (CTA) is a generalization of Cross/skeleton matrix and CUR Matrix Approximation (CMA) and is a suitable tool for fast low-rank tensor approximation. It facilitates interpreting the underlying data tensors and decomposing/compressing tensors so that their structures, such as nonnegativity, smoothness, or sparsity, can be potentially preserved. This paper reviews and extends stateof-the-art deterministic and randomized algorithms for CTA with intuitive graphical illustrations.We discuss several possible generalizations of the CMA to tensors, including CTAs: based on ber selection, slice-tube selection, and lateral-horizontal slice selection. The main focus is on the CTA algorithms using Tucker and tubal SVD (t-SVD) models while we provide references to other decompositions such as Tensor Train (TT), Hierarchical Tucker (HT), and Canonical Polyadic (CP) decompositions. We evaluate the performance of the CTA algorithms by extensive computer simulations to compress color and medical images and compare their performance. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/149081 Ahmadi Asl, Salman; Caiafa, César Federico; Cichocki, Andrzej; Phan, Anh Huy; Tanaka, Toshihisa; et al.; Cross Tensor Approximation Methods for Compression and Dimensionality Reduction; IEEE; IEEE Access; 9; 11-2021; 150809-150838 2169-3536 2169-3536 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/149081 |
identifier_str_mv |
Ahmadi Asl, Salman; Caiafa, César Federico; Cichocki, Andrzej; Phan, Anh Huy; Tanaka, Toshihisa; et al.; Cross Tensor Approximation Methods for Compression and Dimensionality Reduction; IEEE; IEEE Access; 9; 11-2021; 150809-150838 2169-3536 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9599673?source=authoralert info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2021.3125069 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082920494661632 |
score |
13.22299 |