Decomposition methods for machine learning with small, incomplete or noisy datasets
- Autores
- Caiafa, César Federico; Sole Casals, Jordi; Marti Puig, Pere; Sun, Zhe; Tanaka,Toshihisa
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In many machine learning applications, measurements are sometimes incomplete or noisy resulting in missing features. In other cases, and for different reasons, the datasets are originally small, and therefore, more data samples are required to derive useful supervised or unsupervised classification methods. Correct handling of incomplete, noisy or small datasets in machine learning is a fundamental and classic challenge. In this article, we provide a unified review of recently proposed methods based on signal decomposition for missing features imputation (data completion), classification of noisy samples and artificial generation of new data samples (data augmentation). We illustrate the application of these signal decomposition methods in diverse selected practical machine learning examples including: brain computer interface, epileptic intracranial electroencephalogram signals classification, face recognition/verification and water networks data analysis. We show that a signal decomposition approach can provide valuable tools to improve machine learning performance with low quality datasets.
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Sole Casals, Jordi. Center for Advanced Intelligence; Japón
Fil: Marti Puig, Pere. University of Catalonia; España
Fil: Sun, Zhe. RIKEN; Japón
Fil: Tanaka,Toshihisa. Tokyo University of Agriculture and Technology; Japón - Materia
-
empirical mode decomposition
machine learning
sparse representation
tensor decomposition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/127445
Ver los metadatos del registro completo
id |
CONICETDig_4381c4f63e6130f032695fb2544f6e58 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/127445 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Decomposition methods for machine learning with small, incomplete or noisy datasetsCaiafa, César FedericoSole Casals, JordiMarti Puig, PereSun, ZheTanaka,Toshihisaempirical mode decompositionmachine learningsparse representationtensor decompositionhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In many machine learning applications, measurements are sometimes incomplete or noisy resulting in missing features. In other cases, and for different reasons, the datasets are originally small, and therefore, more data samples are required to derive useful supervised or unsupervised classification methods. Correct handling of incomplete, noisy or small datasets in machine learning is a fundamental and classic challenge. In this article, we provide a unified review of recently proposed methods based on signal decomposition for missing features imputation (data completion), classification of noisy samples and artificial generation of new data samples (data augmentation). We illustrate the application of these signal decomposition methods in diverse selected practical machine learning examples including: brain computer interface, epileptic intracranial electroencephalogram signals classification, face recognition/verification and water networks data analysis. We show that a signal decomposition approach can provide valuable tools to improve machine learning performance with low quality datasets.Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Sole Casals, Jordi. Center for Advanced Intelligence; JapónFil: Marti Puig, Pere. University of Catalonia; EspañaFil: Sun, Zhe. RIKEN; JapónFil: Tanaka,Toshihisa. Tokyo University of Agriculture and Technology; JapónMDPI2020-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/127445Caiafa, César Federico; Sole Casals, Jordi; Marti Puig, Pere; Sun, Zhe; Tanaka,Toshihisa; Decomposition methods for machine learning with small, incomplete or noisy datasets; MDPI; Applied Sciences; 10; 23; 11-2020; 1-212076-3417CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/10/23/8481info:eu-repo/semantics/altIdentifier/doi/10.3390/app10238481info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:03Zoai:ri.conicet.gov.ar:11336/127445instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:04.248CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Decomposition methods for machine learning with small, incomplete or noisy datasets |
title |
Decomposition methods for machine learning with small, incomplete or noisy datasets |
spellingShingle |
Decomposition methods for machine learning with small, incomplete or noisy datasets Caiafa, César Federico empirical mode decomposition machine learning sparse representation tensor decomposition |
title_short |
Decomposition methods for machine learning with small, incomplete or noisy datasets |
title_full |
Decomposition methods for machine learning with small, incomplete or noisy datasets |
title_fullStr |
Decomposition methods for machine learning with small, incomplete or noisy datasets |
title_full_unstemmed |
Decomposition methods for machine learning with small, incomplete or noisy datasets |
title_sort |
Decomposition methods for machine learning with small, incomplete or noisy datasets |
dc.creator.none.fl_str_mv |
Caiafa, César Federico Sole Casals, Jordi Marti Puig, Pere Sun, Zhe Tanaka,Toshihisa |
author |
Caiafa, César Federico |
author_facet |
Caiafa, César Federico Sole Casals, Jordi Marti Puig, Pere Sun, Zhe Tanaka,Toshihisa |
author_role |
author |
author2 |
Sole Casals, Jordi Marti Puig, Pere Sun, Zhe Tanaka,Toshihisa |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
empirical mode decomposition machine learning sparse representation tensor decomposition |
topic |
empirical mode decomposition machine learning sparse representation tensor decomposition |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In many machine learning applications, measurements are sometimes incomplete or noisy resulting in missing features. In other cases, and for different reasons, the datasets are originally small, and therefore, more data samples are required to derive useful supervised or unsupervised classification methods. Correct handling of incomplete, noisy or small datasets in machine learning is a fundamental and classic challenge. In this article, we provide a unified review of recently proposed methods based on signal decomposition for missing features imputation (data completion), classification of noisy samples and artificial generation of new data samples (data augmentation). We illustrate the application of these signal decomposition methods in diverse selected practical machine learning examples including: brain computer interface, epileptic intracranial electroencephalogram signals classification, face recognition/verification and water networks data analysis. We show that a signal decomposition approach can provide valuable tools to improve machine learning performance with low quality datasets. Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina Fil: Sole Casals, Jordi. Center for Advanced Intelligence; Japón Fil: Marti Puig, Pere. University of Catalonia; España Fil: Sun, Zhe. RIKEN; Japón Fil: Tanaka,Toshihisa. Tokyo University of Agriculture and Technology; Japón |
description |
In many machine learning applications, measurements are sometimes incomplete or noisy resulting in missing features. In other cases, and for different reasons, the datasets are originally small, and therefore, more data samples are required to derive useful supervised or unsupervised classification methods. Correct handling of incomplete, noisy or small datasets in machine learning is a fundamental and classic challenge. In this article, we provide a unified review of recently proposed methods based on signal decomposition for missing features imputation (data completion), classification of noisy samples and artificial generation of new data samples (data augmentation). We illustrate the application of these signal decomposition methods in diverse selected practical machine learning examples including: brain computer interface, epileptic intracranial electroencephalogram signals classification, face recognition/verification and water networks data analysis. We show that a signal decomposition approach can provide valuable tools to improve machine learning performance with low quality datasets. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/127445 Caiafa, César Federico; Sole Casals, Jordi; Marti Puig, Pere; Sun, Zhe; Tanaka,Toshihisa; Decomposition methods for machine learning with small, incomplete or noisy datasets; MDPI; Applied Sciences; 10; 23; 11-2020; 1-21 2076-3417 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/127445 |
identifier_str_mv |
Caiafa, César Federico; Sole Casals, Jordi; Marti Puig, Pere; Sun, Zhe; Tanaka,Toshihisa; Decomposition methods for machine learning with small, incomplete or noisy datasets; MDPI; Applied Sciences; 10; 23; 11-2020; 1-21 2076-3417 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/10/23/8481 info:eu-repo/semantics/altIdentifier/doi/10.3390/app10238481 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269198872477696 |
score |
13.13397 |