A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging

Autores
Caiafa, César Federico; Cichocki, Andrzej; Pestilli, Franco
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
We use a multidimensional signal representation that integrates diffusion Magnetic Resonance Imaging (dMRI) and tractography (brain connections) using sparse tensor decomposition. The representation encodes brain connections (fibers) into a very-large, but sparse, core tensor and allows to predict dMRI measurements based on a dictionary of diffusion signals. We propose an algorithm to learn the constituent parts of the model from a dataset. The algorithm assumes a tractography model (support of core tensor) and iteratively minimizes the Frobenius norm of the error as a function of the dictionary atoms, the values of nonzero entries in the sparse core tensor and the fiber weights. We use a nonparametric dictionary learning (DL) approach to estimate signal atoms. Moreover, the algorithm is able to learn multiple dictionaries associated to different brain locations (voxels) allowing for mapping distinctive tissue types. We illustrate the algorithm through results obtained on a large in-vivo high-resolution dataset.
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Indiana University; Estados Unidos
Fil: Cichocki, Andrzej. Labsp. Riken; Japón
Fil: Pestilli, Franco. Indiana University; Estados Unidos
Signal Processing with Adaptive Sparse Structured Representations workshop
Lisboa
Portugal
University of Lisbon
Materia
Diffusion MRI
Sparse Decomposition
Tensor Decomposition
Dictionary learning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/138585

id CONICETDig_74a422cbed7ba9d83444757c5c55fa0b
oai_identifier_str oai:ri.conicet.gov.ar:11336/138585
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain ImagingCaiafa, César FedericoCichocki, AndrzejPestilli, FrancoDiffusion MRISparse DecompositionTensor DecompositionDictionary learninghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We use a multidimensional signal representation that integrates diffusion Magnetic Resonance Imaging (dMRI) and tractography (brain connections) using sparse tensor decomposition. The representation encodes brain connections (fibers) into a very-large, but sparse, core tensor and allows to predict dMRI measurements based on a dictionary of diffusion signals. We propose an algorithm to learn the constituent parts of the model from a dataset. The algorithm assumes a tractography model (support of core tensor) and iteratively minimizes the Frobenius norm of the error as a function of the dictionary atoms, the values of nonzero entries in the sparse core tensor and the fiber weights. We use a nonparametric dictionary learning (DL) approach to estimate signal atoms. Moreover, the algorithm is able to learn multiple dictionaries associated to different brain locations (voxels) allowing for mapping distinctive tissue types. We illustrate the algorithm through results obtained on a large in-vivo high-resolution dataset.Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Indiana University; Estados UnidosFil: Cichocki, Andrzej. Labsp. Riken; JapónFil: Pestilli, Franco. Indiana University; Estados UnidosSignal Processing with Adaptive Sparse Structured Representations workshopLisboaPortugalUniversity of LisbonUniversity of Lisbon2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectWorkshopBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/138585A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging; Signal Processing with Adaptive Sparse Structured Representations workshop; Lisboa; Portugal; 2017; 1-2CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://spars2017.lx.it.ptinfo:eu-repo/semantics/altIdentifier/url/http://spars2017.lx.it.pt/index_files/papers/SPARS2017_Paper_143.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:19Zoai:ri.conicet.gov.ar:11336/138585instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:20.088CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging
title A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging
spellingShingle A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging
Caiafa, César Federico
Diffusion MRI
Sparse Decomposition
Tensor Decomposition
Dictionary learning
title_short A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging
title_full A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging
title_fullStr A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging
title_full_unstemmed A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging
title_sort A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging
dc.creator.none.fl_str_mv Caiafa, César Federico
Cichocki, Andrzej
Pestilli, Franco
author Caiafa, César Federico
author_facet Caiafa, César Federico
Cichocki, Andrzej
Pestilli, Franco
author_role author
author2 Cichocki, Andrzej
Pestilli, Franco
author2_role author
author
dc.subject.none.fl_str_mv Diffusion MRI
Sparse Decomposition
Tensor Decomposition
Dictionary learning
topic Diffusion MRI
Sparse Decomposition
Tensor Decomposition
Dictionary learning
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We use a multidimensional signal representation that integrates diffusion Magnetic Resonance Imaging (dMRI) and tractography (brain connections) using sparse tensor decomposition. The representation encodes brain connections (fibers) into a very-large, but sparse, core tensor and allows to predict dMRI measurements based on a dictionary of diffusion signals. We propose an algorithm to learn the constituent parts of the model from a dataset. The algorithm assumes a tractography model (support of core tensor) and iteratively minimizes the Frobenius norm of the error as a function of the dictionary atoms, the values of nonzero entries in the sparse core tensor and the fiber weights. We use a nonparametric dictionary learning (DL) approach to estimate signal atoms. Moreover, the algorithm is able to learn multiple dictionaries associated to different brain locations (voxels) allowing for mapping distinctive tissue types. We illustrate the algorithm through results obtained on a large in-vivo high-resolution dataset.
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Indiana University; Estados Unidos
Fil: Cichocki, Andrzej. Labsp. Riken; Japón
Fil: Pestilli, Franco. Indiana University; Estados Unidos
Signal Processing with Adaptive Sparse Structured Representations workshop
Lisboa
Portugal
University of Lisbon
description We use a multidimensional signal representation that integrates diffusion Magnetic Resonance Imaging (dMRI) and tractography (brain connections) using sparse tensor decomposition. The representation encodes brain connections (fibers) into a very-large, but sparse, core tensor and allows to predict dMRI measurements based on a dictionary of diffusion signals. We propose an algorithm to learn the constituent parts of the model from a dataset. The algorithm assumes a tractography model (support of core tensor) and iteratively minimizes the Frobenius norm of the error as a function of the dictionary atoms, the values of nonzero entries in the sparse core tensor and the fiber weights. We use a nonparametric dictionary learning (DL) approach to estimate signal atoms. Moreover, the algorithm is able to learn multiple dictionaries associated to different brain locations (voxels) allowing for mapping distinctive tissue types. We illustrate the algorithm through results obtained on a large in-vivo high-resolution dataset.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Workshop
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/138585
A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging; Signal Processing with Adaptive Sparse Structured Representations workshop; Lisboa; Portugal; 2017; 1-2
CONICET Digital
CONICET
url http://hdl.handle.net/11336/138585
identifier_str_mv A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging; Signal Processing with Adaptive Sparse Structured Representations workshop; Lisboa; Portugal; 2017; 1-2
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://spars2017.lx.it.pt
info:eu-repo/semantics/altIdentifier/url/http://spars2017.lx.it.pt/index_files/papers/SPARS2017_Paper_143.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv University of Lisbon
publisher.none.fl_str_mv University of Lisbon
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269999150923776
score 13.13397