A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging
- Autores
- Caiafa, César Federico; Cichocki, Andrzej; Pestilli, Franco
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We use a multidimensional signal representation that integrates diffusion Magnetic Resonance Imaging (dMRI) and tractography (brain connections) using sparse tensor decomposition. The representation encodes brain connections (fibers) into a very-large, but sparse, core tensor and allows to predict dMRI measurements based on a dictionary of diffusion signals. We propose an algorithm to learn the constituent parts of the model from a dataset. The algorithm assumes a tractography model (support of core tensor) and iteratively minimizes the Frobenius norm of the error as a function of the dictionary atoms, the values of nonzero entries in the sparse core tensor and the fiber weights. We use a nonparametric dictionary learning (DL) approach to estimate signal atoms. Moreover, the algorithm is able to learn multiple dictionaries associated to different brain locations (voxels) allowing for mapping distinctive tissue types. We illustrate the algorithm through results obtained on a large in-vivo high-resolution dataset.
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Indiana University; Estados Unidos
Fil: Cichocki, Andrzej. Labsp. Riken; Japón
Fil: Pestilli, Franco. Indiana University; Estados Unidos
Signal Processing with Adaptive Sparse Structured Representations workshop
Lisboa
Portugal
University of Lisbon - Materia
-
Diffusion MRI
Sparse Decomposition
Tensor Decomposition
Dictionary learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/138585
Ver los metadatos del registro completo
id |
CONICETDig_74a422cbed7ba9d83444757c5c55fa0b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/138585 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain ImagingCaiafa, César FedericoCichocki, AndrzejPestilli, FrancoDiffusion MRISparse DecompositionTensor DecompositionDictionary learninghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We use a multidimensional signal representation that integrates diffusion Magnetic Resonance Imaging (dMRI) and tractography (brain connections) using sparse tensor decomposition. The representation encodes brain connections (fibers) into a very-large, but sparse, core tensor and allows to predict dMRI measurements based on a dictionary of diffusion signals. We propose an algorithm to learn the constituent parts of the model from a dataset. The algorithm assumes a tractography model (support of core tensor) and iteratively minimizes the Frobenius norm of the error as a function of the dictionary atoms, the values of nonzero entries in the sparse core tensor and the fiber weights. We use a nonparametric dictionary learning (DL) approach to estimate signal atoms. Moreover, the algorithm is able to learn multiple dictionaries associated to different brain locations (voxels) allowing for mapping distinctive tissue types. We illustrate the algorithm through results obtained on a large in-vivo high-resolution dataset.Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Indiana University; Estados UnidosFil: Cichocki, Andrzej. Labsp. Riken; JapónFil: Pestilli, Franco. Indiana University; Estados UnidosSignal Processing with Adaptive Sparse Structured Representations workshopLisboaPortugalUniversity of LisbonUniversity of Lisbon2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectWorkshopBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/138585A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging; Signal Processing with Adaptive Sparse Structured Representations workshop; Lisboa; Portugal; 2017; 1-2CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://spars2017.lx.it.ptinfo:eu-repo/semantics/altIdentifier/url/http://spars2017.lx.it.pt/index_files/papers/SPARS2017_Paper_143.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:19Zoai:ri.conicet.gov.ar:11336/138585instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:20.088CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging |
title |
A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging |
spellingShingle |
A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging Caiafa, César Federico Diffusion MRI Sparse Decomposition Tensor Decomposition Dictionary learning |
title_short |
A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging |
title_full |
A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging |
title_fullStr |
A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging |
title_full_unstemmed |
A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging |
title_sort |
A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging |
dc.creator.none.fl_str_mv |
Caiafa, César Federico Cichocki, Andrzej Pestilli, Franco |
author |
Caiafa, César Federico |
author_facet |
Caiafa, César Federico Cichocki, Andrzej Pestilli, Franco |
author_role |
author |
author2 |
Cichocki, Andrzej Pestilli, Franco |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Diffusion MRI Sparse Decomposition Tensor Decomposition Dictionary learning |
topic |
Diffusion MRI Sparse Decomposition Tensor Decomposition Dictionary learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We use a multidimensional signal representation that integrates diffusion Magnetic Resonance Imaging (dMRI) and tractography (brain connections) using sparse tensor decomposition. The representation encodes brain connections (fibers) into a very-large, but sparse, core tensor and allows to predict dMRI measurements based on a dictionary of diffusion signals. We propose an algorithm to learn the constituent parts of the model from a dataset. The algorithm assumes a tractography model (support of core tensor) and iteratively minimizes the Frobenius norm of the error as a function of the dictionary atoms, the values of nonzero entries in the sparse core tensor and the fiber weights. We use a nonparametric dictionary learning (DL) approach to estimate signal atoms. Moreover, the algorithm is able to learn multiple dictionaries associated to different brain locations (voxels) allowing for mapping distinctive tissue types. We illustrate the algorithm through results obtained on a large in-vivo high-resolution dataset. Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Indiana University; Estados Unidos Fil: Cichocki, Andrzej. Labsp. Riken; Japón Fil: Pestilli, Franco. Indiana University; Estados Unidos Signal Processing with Adaptive Sparse Structured Representations workshop Lisboa Portugal University of Lisbon |
description |
We use a multidimensional signal representation that integrates diffusion Magnetic Resonance Imaging (dMRI) and tractography (brain connections) using sparse tensor decomposition. The representation encodes brain connections (fibers) into a very-large, but sparse, core tensor and allows to predict dMRI measurements based on a dictionary of diffusion signals. We propose an algorithm to learn the constituent parts of the model from a dataset. The algorithm assumes a tractography model (support of core tensor) and iteratively minimizes the Frobenius norm of the error as a function of the dictionary atoms, the values of nonzero entries in the sparse core tensor and the fiber weights. We use a nonparametric dictionary learning (DL) approach to estimate signal atoms. Moreover, the algorithm is able to learn multiple dictionaries associated to different brain locations (voxels) allowing for mapping distinctive tissue types. We illustrate the algorithm through results obtained on a large in-vivo high-resolution dataset. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Workshop Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/138585 A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging; Signal Processing with Adaptive Sparse Structured Representations workshop; Lisboa; Portugal; 2017; 1-2 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/138585 |
identifier_str_mv |
A Sparse Tensor Decomposition with Multi-Dictionary Learning Applied to Diffusion Brain Imaging; Signal Processing with Adaptive Sparse Structured Representations workshop; Lisboa; Portugal; 2017; 1-2 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://spars2017.lx.it.pt info:eu-repo/semantics/altIdentifier/url/http://spars2017.lx.it.pt/index_files/papers/SPARS2017_Paper_143.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
University of Lisbon |
publisher.none.fl_str_mv |
University of Lisbon |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269999150923776 |
score |
13.13397 |