Análisis de calidad de arenas de fracturación mediante visión artificial y redes neuronales

Autores
Rodríguez Medina, Gustavo; Chuk, Oscar Daniel; Luna, Adriana; Bertero, Regina; Núñez, Enrique
Año de publicación
2022
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La fracturación hidráulica realizada para extraer hidrocarburos de yacimientos no convencionales requiere de la inyección de arenas que actúan como apuntalantes de la fractura. La calidad de las arenas para cumplir dicha función se evalúa por la norma API19C, que establece medidas geométricas – esfericidad y redondez- más un porcentaje de fractura cuando la muestra es sometida a compresión. Todas estas mediciones deben encontrarse dentro de valores límites para asegurar la calidad de la arena. Según la norma, la inspección se realiza visualmente por un operador sobre un conjunto de 20 granos. Esto introduce un importante grado de subjetividad, y poca validez estadística. Para solucionar esto, la bibliografía refiere distintos métodos basados en visión artificial. Cada uno de estos métodos tiene ventajas y desventajas según la geometría, color de la partícula y la definición de la imagen usada. En este trabajo se presenta una metodología integrada a partir de varios métodos conocidos, más uno novedoso desarrollado por los autores para medir la redondez, que es la variable más difícil de medir. Las distintas medidas son tratadas por redes neuronales para dar una medida final de la redondez, que tiene un alto grado de correlación con la medida teórica de cada partícula considerada. Las medidas de esfericidad y porcentaje de fractura obtenidas también han dado valores consistentes. El método de visión artificial desarrollado es sumamente eficiente para determinar, a partir de las medidas obtenidas, la capacidad de una arena para actuar como apuntalante en una operación de fractura hidráulica.
Red de Universidades con Carreras en Informática
Materia
Ciencias Informáticas
Visión artificial
Redes neuronales
Fracturación hidráulica
Arenas
Geometría
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/143347

id SEDICI_b55c7706abc3d1f93610edee89570834
oai_identifier_str oai:sedici.unlp.edu.ar:10915/143347
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Análisis de calidad de arenas de fracturación mediante visión artificial y redes neuronalesRodríguez Medina, GustavoChuk, Oscar DanielLuna, AdrianaBertero, ReginaNúñez, EnriqueCiencias InformáticasVisión artificialRedes neuronalesFracturación hidráulicaArenasGeometríaLa fracturación hidráulica realizada para extraer hidrocarburos de yacimientos no convencionales requiere de la inyección de arenas que actúan como apuntalantes de la fractura. La calidad de las arenas para cumplir dicha función se evalúa por la norma API19C, que establece medidas geométricas – esfericidad y redondez- más un porcentaje de fractura cuando la muestra es sometida a compresión. Todas estas mediciones deben encontrarse dentro de valores límites para asegurar la calidad de la arena. Según la norma, la inspección se realiza visualmente por un operador sobre un conjunto de 20 granos. Esto introduce un importante grado de subjetividad, y poca validez estadística. Para solucionar esto, la bibliografía refiere distintos métodos basados en visión artificial. Cada uno de estos métodos tiene ventajas y desventajas según la geometría, color de la partícula y la definición de la imagen usada. En este trabajo se presenta una metodología integrada a partir de varios métodos conocidos, más uno novedoso desarrollado por los autores para medir la redondez, que es la variable más difícil de medir. Las distintas medidas son tratadas por redes neuronales para dar una medida final de la redondez, que tiene un alto grado de correlación con la medida teórica de cada partícula considerada. Las medidas de esfericidad y porcentaje de fractura obtenidas también han dado valores consistentes. El método de visión artificial desarrollado es sumamente eficiente para determinar, a partir de las medidas obtenidas, la capacidad de una arena para actuar como apuntalante en una operación de fractura hidráulica.Red de Universidades con Carreras en Informática2022-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf97-102http://sedici.unlp.edu.ar/handle/10915/143347spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-48222-3-9info:eu-repo/semantics/reference/hdl/10915/142555info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:08:43Zoai:sedici.unlp.edu.ar:10915/143347Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:08:43.352SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Análisis de calidad de arenas de fracturación mediante visión artificial y redes neuronales
title Análisis de calidad de arenas de fracturación mediante visión artificial y redes neuronales
spellingShingle Análisis de calidad de arenas de fracturación mediante visión artificial y redes neuronales
Rodríguez Medina, Gustavo
Ciencias Informáticas
Visión artificial
Redes neuronales
Fracturación hidráulica
Arenas
Geometría
title_short Análisis de calidad de arenas de fracturación mediante visión artificial y redes neuronales
title_full Análisis de calidad de arenas de fracturación mediante visión artificial y redes neuronales
title_fullStr Análisis de calidad de arenas de fracturación mediante visión artificial y redes neuronales
title_full_unstemmed Análisis de calidad de arenas de fracturación mediante visión artificial y redes neuronales
title_sort Análisis de calidad de arenas de fracturación mediante visión artificial y redes neuronales
dc.creator.none.fl_str_mv Rodríguez Medina, Gustavo
Chuk, Oscar Daniel
Luna, Adriana
Bertero, Regina
Núñez, Enrique
author Rodríguez Medina, Gustavo
author_facet Rodríguez Medina, Gustavo
Chuk, Oscar Daniel
Luna, Adriana
Bertero, Regina
Núñez, Enrique
author_role author
author2 Chuk, Oscar Daniel
Luna, Adriana
Bertero, Regina
Núñez, Enrique
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Visión artificial
Redes neuronales
Fracturación hidráulica
Arenas
Geometría
topic Ciencias Informáticas
Visión artificial
Redes neuronales
Fracturación hidráulica
Arenas
Geometría
dc.description.none.fl_txt_mv La fracturación hidráulica realizada para extraer hidrocarburos de yacimientos no convencionales requiere de la inyección de arenas que actúan como apuntalantes de la fractura. La calidad de las arenas para cumplir dicha función se evalúa por la norma API19C, que establece medidas geométricas – esfericidad y redondez- más un porcentaje de fractura cuando la muestra es sometida a compresión. Todas estas mediciones deben encontrarse dentro de valores límites para asegurar la calidad de la arena. Según la norma, la inspección se realiza visualmente por un operador sobre un conjunto de 20 granos. Esto introduce un importante grado de subjetividad, y poca validez estadística. Para solucionar esto, la bibliografía refiere distintos métodos basados en visión artificial. Cada uno de estos métodos tiene ventajas y desventajas según la geometría, color de la partícula y la definición de la imagen usada. En este trabajo se presenta una metodología integrada a partir de varios métodos conocidos, más uno novedoso desarrollado por los autores para medir la redondez, que es la variable más difícil de medir. Las distintas medidas son tratadas por redes neuronales para dar una medida final de la redondez, que tiene un alto grado de correlación con la medida teórica de cada partícula considerada. Las medidas de esfericidad y porcentaje de fractura obtenidas también han dado valores consistentes. El método de visión artificial desarrollado es sumamente eficiente para determinar, a partir de las medidas obtenidas, la capacidad de una arena para actuar como apuntalante en una operación de fractura hidráulica.
Red de Universidades con Carreras en Informática
description La fracturación hidráulica realizada para extraer hidrocarburos de yacimientos no convencionales requiere de la inyección de arenas que actúan como apuntalantes de la fractura. La calidad de las arenas para cumplir dicha función se evalúa por la norma API19C, que establece medidas geométricas – esfericidad y redondez- más un porcentaje de fractura cuando la muestra es sometida a compresión. Todas estas mediciones deben encontrarse dentro de valores límites para asegurar la calidad de la arena. Según la norma, la inspección se realiza visualmente por un operador sobre un conjunto de 20 granos. Esto introduce un importante grado de subjetividad, y poca validez estadística. Para solucionar esto, la bibliografía refiere distintos métodos basados en visión artificial. Cada uno de estos métodos tiene ventajas y desventajas según la geometría, color de la partícula y la definición de la imagen usada. En este trabajo se presenta una metodología integrada a partir de varios métodos conocidos, más uno novedoso desarrollado por los autores para medir la redondez, que es la variable más difícil de medir. Las distintas medidas son tratadas por redes neuronales para dar una medida final de la redondez, que tiene un alto grado de correlación con la medida teórica de cada partícula considerada. Las medidas de esfericidad y porcentaje de fractura obtenidas también han dado valores consistentes. El método de visión artificial desarrollado es sumamente eficiente para determinar, a partir de las medidas obtenidas, la capacidad de una arena para actuar como apuntalante en una operación de fractura hidráulica.
publishDate 2022
dc.date.none.fl_str_mv 2022-04
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/143347
url http://sedici.unlp.edu.ar/handle/10915/143347
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-48222-3-9
info:eu-repo/semantics/reference/hdl/10915/142555
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
97-102
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260590207172608
score 13.13397