Clasificación de partículas de arena a través de redes neuronales convolucionales
- Autores
- Rodríguez Medina, Gustavo; Chuk, Oscar Daniel; Luna, Adriana; Bertero, Regina
- Año de publicación
- 2023
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Se presenta una alternativa para clasificar partículas de arenas, en cuanto a la característica de redondez, utilizando redes neuronales convolucionales. Se ha seleccionado este tipo de redes neuronales, por la atractiva posibilidad de poder operar directamente sobre las imágenes digitales de partículas de arena, sin la necesidad de tener que extraer previamente características o medidas alternativas de las imágenes. Esta propuesta resulta ser una opción diferente a la utilización de redes neuronales que no aplican convolución, y también a técnicas de visión artificial (que emplean cálculos, métodos y medidas alternativas para estimar valores de redondez). La necesidad de poder clasificar las partículas en cuanto a su redondez, radica en que estas arenas se utilizan en procesos de fracturación hidráulica para la extracción de hidrocarburos de manera no convencional. Estos yacimientos no convencionales requieren de la inyección de arenas que actúan como apuntalantes de la fractura. La calidad de las arenas para cumplir dicha función se evalúa por la norma API19C, que establece medidas geométricas –esfericidad y redondez- más un porcentaje de fractura cuando la muestra es sometida a compresión. Todas estas mediciones deben encontrarse dentro de valores límites para asegurar la calidad de la arena. El método indicado por la norma (tradicional no automatizado) para la medición de redondez tiene una alta dependencia del criterio del observador o laboratorista, que analiza una muestra mediante un microscopio eligiendo un número muy reducido de partículas al azar, y comparándolas visualmente con formas graficas establecidas en una cartilla.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Redes neuronales convolucionales
Partículas de arena
Redondez
Fracturación hidráulica - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/163233
Ver los metadatos del registro completo
id |
SEDICI_d781059e4988794b2ecd0d77ec4b5b71 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/163233 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Clasificación de partículas de arena a través de redes neuronales convolucionalesRodríguez Medina, GustavoChuk, Oscar DanielLuna, AdrianaBertero, ReginaCiencias InformáticasRedes neuronales convolucionalesPartículas de arenaRedondezFracturación hidráulicaSe presenta una alternativa para clasificar partículas de arenas, en cuanto a la característica de redondez, utilizando redes neuronales convolucionales. Se ha seleccionado este tipo de redes neuronales, por la atractiva posibilidad de poder operar directamente sobre las imágenes digitales de partículas de arena, sin la necesidad de tener que extraer previamente características o medidas alternativas de las imágenes. Esta propuesta resulta ser una opción diferente a la utilización de redes neuronales que no aplican convolución, y también a técnicas de visión artificial (que emplean cálculos, métodos y medidas alternativas para estimar valores de redondez). La necesidad de poder clasificar las partículas en cuanto a su redondez, radica en que estas arenas se utilizan en procesos de fracturación hidráulica para la extracción de hidrocarburos de manera no convencional. Estos yacimientos no convencionales requieren de la inyección de arenas que actúan como apuntalantes de la fractura. La calidad de las arenas para cumplir dicha función se evalúa por la norma API19C, que establece medidas geométricas –esfericidad y redondez- más un porcentaje de fractura cuando la muestra es sometida a compresión. Todas estas mediciones deben encontrarse dentro de valores límites para asegurar la calidad de la arena. El método indicado por la norma (tradicional no automatizado) para la medición de redondez tiene una alta dependencia del criterio del observador o laboratorista, que analiza una muestra mediante un microscopio eligiendo un número muy reducido de partículas al azar, y comparándolas visualmente con formas graficas establecidas en una cartilla.Red de Universidades con Carreras en Informática2023-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/163233spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-3724-66-4info:eu-repo/semantics/altIdentifier/isbn/978-987-3724-67-1info:eu-repo/semantics/reference/url/https://sedici.unlp.edu.ar/handle/10915/162004info:eu-repo/semantics/reference/url/https://sedici.unlp.edu.ar/handle/10915/161620info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:14:51Zoai:sedici.unlp.edu.ar:10915/163233Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:14:51.758SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Clasificación de partículas de arena a través de redes neuronales convolucionales |
title |
Clasificación de partículas de arena a través de redes neuronales convolucionales |
spellingShingle |
Clasificación de partículas de arena a través de redes neuronales convolucionales Rodríguez Medina, Gustavo Ciencias Informáticas Redes neuronales convolucionales Partículas de arena Redondez Fracturación hidráulica |
title_short |
Clasificación de partículas de arena a través de redes neuronales convolucionales |
title_full |
Clasificación de partículas de arena a través de redes neuronales convolucionales |
title_fullStr |
Clasificación de partículas de arena a través de redes neuronales convolucionales |
title_full_unstemmed |
Clasificación de partículas de arena a través de redes neuronales convolucionales |
title_sort |
Clasificación de partículas de arena a través de redes neuronales convolucionales |
dc.creator.none.fl_str_mv |
Rodríguez Medina, Gustavo Chuk, Oscar Daniel Luna, Adriana Bertero, Regina |
author |
Rodríguez Medina, Gustavo |
author_facet |
Rodríguez Medina, Gustavo Chuk, Oscar Daniel Luna, Adriana Bertero, Regina |
author_role |
author |
author2 |
Chuk, Oscar Daniel Luna, Adriana Bertero, Regina |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Redes neuronales convolucionales Partículas de arena Redondez Fracturación hidráulica |
topic |
Ciencias Informáticas Redes neuronales convolucionales Partículas de arena Redondez Fracturación hidráulica |
dc.description.none.fl_txt_mv |
Se presenta una alternativa para clasificar partículas de arenas, en cuanto a la característica de redondez, utilizando redes neuronales convolucionales. Se ha seleccionado este tipo de redes neuronales, por la atractiva posibilidad de poder operar directamente sobre las imágenes digitales de partículas de arena, sin la necesidad de tener que extraer previamente características o medidas alternativas de las imágenes. Esta propuesta resulta ser una opción diferente a la utilización de redes neuronales que no aplican convolución, y también a técnicas de visión artificial (que emplean cálculos, métodos y medidas alternativas para estimar valores de redondez). La necesidad de poder clasificar las partículas en cuanto a su redondez, radica en que estas arenas se utilizan en procesos de fracturación hidráulica para la extracción de hidrocarburos de manera no convencional. Estos yacimientos no convencionales requieren de la inyección de arenas que actúan como apuntalantes de la fractura. La calidad de las arenas para cumplir dicha función se evalúa por la norma API19C, que establece medidas geométricas –esfericidad y redondez- más un porcentaje de fractura cuando la muestra es sometida a compresión. Todas estas mediciones deben encontrarse dentro de valores límites para asegurar la calidad de la arena. El método indicado por la norma (tradicional no automatizado) para la medición de redondez tiene una alta dependencia del criterio del observador o laboratorista, que analiza una muestra mediante un microscopio eligiendo un número muy reducido de partículas al azar, y comparándolas visualmente con formas graficas establecidas en una cartilla. Red de Universidades con Carreras en Informática |
description |
Se presenta una alternativa para clasificar partículas de arenas, en cuanto a la característica de redondez, utilizando redes neuronales convolucionales. Se ha seleccionado este tipo de redes neuronales, por la atractiva posibilidad de poder operar directamente sobre las imágenes digitales de partículas de arena, sin la necesidad de tener que extraer previamente características o medidas alternativas de las imágenes. Esta propuesta resulta ser una opción diferente a la utilización de redes neuronales que no aplican convolución, y también a técnicas de visión artificial (que emplean cálculos, métodos y medidas alternativas para estimar valores de redondez). La necesidad de poder clasificar las partículas en cuanto a su redondez, radica en que estas arenas se utilizan en procesos de fracturación hidráulica para la extracción de hidrocarburos de manera no convencional. Estos yacimientos no convencionales requieren de la inyección de arenas que actúan como apuntalantes de la fractura. La calidad de las arenas para cumplir dicha función se evalúa por la norma API19C, que establece medidas geométricas –esfericidad y redondez- más un porcentaje de fractura cuando la muestra es sometida a compresión. Todas estas mediciones deben encontrarse dentro de valores límites para asegurar la calidad de la arena. El método indicado por la norma (tradicional no automatizado) para la medición de redondez tiene una alta dependencia del criterio del observador o laboratorista, que analiza una muestra mediante un microscopio eligiendo un número muy reducido de partículas al azar, y comparándolas visualmente con formas graficas establecidas en una cartilla. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/163233 |
url |
http://sedici.unlp.edu.ar/handle/10915/163233 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-3724-66-4 info:eu-repo/semantics/altIdentifier/isbn/978-987-3724-67-1 info:eu-repo/semantics/reference/url/https://sedici.unlp.edu.ar/handle/10915/162004 info:eu-repo/semantics/reference/url/https://sedici.unlp.edu.ar/handle/10915/161620 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260653388070912 |
score |
13.13397 |