Redes neuronales para la clasificación de partículas de arena
- Autores
- Rodríguez Medina, Gustavo; Chuk, Oscar Daniel; Bertero, Regina; Luna, Adriana; Núñez, Enrique; Quinteros, Darío
- Año de publicación
- 2021
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El presente trabajo trata respecto a la utilización de redes neuronales para el reconocimiento de formas y patrones de imágenes digitales de partículas de arena, con destino al uso en procesos de fracturación hidráulica en explotación de hidrocarburos de manera no convencional (Fracking). Si bien, la mayor parte de las redes neuronales permiten el reconocimiento de patrones y clasificación de objetos, hay un tipo particular de redes que en la actualidad han permitido un salto importante en el procesamiento de información e imágenes, y son las redes neuronales convolucionales. Estas permiten la extracción de características directamente desde las propias imágenes sin la necesidad de un trabajo de pre-procesado. Es decir, para este caso, se usan como entradas a la red neuronal las imágenes digitales de partículas o granos arena, y no un conjunto de características extraídas de manera previa por parte del diseñador de la red neuronal. En cuanto a la clasificación de las partículas de arena, en este trabajo se refiere en poder determinar a través de la red neuronal convolucional características de Redondez y Esfericidad específicamente. También se presenta una alternativa para generar el conjunto de datos para el entrenamiento y validación de la red neuronal, mediante la elaboración de un algoritmo de procesamiento de imágenes que permite la generación artificial (gráfica) de partículas de arena, dado que no siempre se puede disponer de un banco de imágenes adecuado.
Eje: Agentes y sistemas inteligentes.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Redes neuronales convolucionales
Conjunto de Datos
Fracturación hidráulica
Partículas de arena - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/119973
Ver los metadatos del registro completo
id |
SEDICI_78ad59aaf38f87879c33f2ce5fb3c48c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/119973 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Redes neuronales para la clasificación de partículas de arenaRodríguez Medina, GustavoChuk, Oscar DanielBertero, ReginaLuna, AdrianaNúñez, EnriqueQuinteros, DaríoCiencias InformáticasRedes neuronales convolucionalesConjunto de DatosFracturación hidráulicaPartículas de arenaEl presente trabajo trata respecto a la utilización de redes neuronales para el reconocimiento de formas y patrones de imágenes digitales de partículas de arena, con destino al uso en procesos de fracturación hidráulica en explotación de hidrocarburos de manera no convencional (<i>Fracking</i>). Si bien, la mayor parte de las redes neuronales permiten el reconocimiento de patrones y clasificación de objetos, hay un tipo particular de redes que en la actualidad han permitido un salto importante en el procesamiento de información e imágenes, y son las redes neuronales convolucionales. Estas permiten la extracción de características directamente desde las propias imágenes sin la necesidad de un trabajo de pre-procesado. Es decir, para este caso, se usan como entradas a la red neuronal las imágenes digitales de partículas o granos arena, y no un conjunto de características extraídas de manera previa por parte del diseñador de la red neuronal. En cuanto a la clasificación de las partículas de arena, en este trabajo se refiere en poder determinar a través de la red neuronal convolucional características de Redondez y Esfericidad específicamente. También se presenta una alternativa para generar el conjunto de datos para el entrenamiento y validación de la red neuronal, mediante la elaboración de un algoritmo de procesamiento de imágenes que permite la generación artificial (gráfica) de partículas de arena, dado que no siempre se puede disponer de un banco de imágenes adecuado.Eje: Agentes y sistemas inteligentes.Red de Universidades con Carreras en Informática2021-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf149-154http://sedici.unlp.edu.ar/handle/10915/119973spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-24611-3-3info:eu-repo/semantics/altIdentifier/isbn/978-987-24611-4-0info:eu-repo/semantics/reference/hdl/10915/119487info:eu-repo/semantics/reference/hdl/10915/119490info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:00:28Zoai:sedici.unlp.edu.ar:10915/119973Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:00:28.416SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Redes neuronales para la clasificación de partículas de arena |
title |
Redes neuronales para la clasificación de partículas de arena |
spellingShingle |
Redes neuronales para la clasificación de partículas de arena Rodríguez Medina, Gustavo Ciencias Informáticas Redes neuronales convolucionales Conjunto de Datos Fracturación hidráulica Partículas de arena |
title_short |
Redes neuronales para la clasificación de partículas de arena |
title_full |
Redes neuronales para la clasificación de partículas de arena |
title_fullStr |
Redes neuronales para la clasificación de partículas de arena |
title_full_unstemmed |
Redes neuronales para la clasificación de partículas de arena |
title_sort |
Redes neuronales para la clasificación de partículas de arena |
dc.creator.none.fl_str_mv |
Rodríguez Medina, Gustavo Chuk, Oscar Daniel Bertero, Regina Luna, Adriana Núñez, Enrique Quinteros, Darío |
author |
Rodríguez Medina, Gustavo |
author_facet |
Rodríguez Medina, Gustavo Chuk, Oscar Daniel Bertero, Regina Luna, Adriana Núñez, Enrique Quinteros, Darío |
author_role |
author |
author2 |
Chuk, Oscar Daniel Bertero, Regina Luna, Adriana Núñez, Enrique Quinteros, Darío |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Redes neuronales convolucionales Conjunto de Datos Fracturación hidráulica Partículas de arena |
topic |
Ciencias Informáticas Redes neuronales convolucionales Conjunto de Datos Fracturación hidráulica Partículas de arena |
dc.description.none.fl_txt_mv |
El presente trabajo trata respecto a la utilización de redes neuronales para el reconocimiento de formas y patrones de imágenes digitales de partículas de arena, con destino al uso en procesos de fracturación hidráulica en explotación de hidrocarburos de manera no convencional (<i>Fracking</i>). Si bien, la mayor parte de las redes neuronales permiten el reconocimiento de patrones y clasificación de objetos, hay un tipo particular de redes que en la actualidad han permitido un salto importante en el procesamiento de información e imágenes, y son las redes neuronales convolucionales. Estas permiten la extracción de características directamente desde las propias imágenes sin la necesidad de un trabajo de pre-procesado. Es decir, para este caso, se usan como entradas a la red neuronal las imágenes digitales de partículas o granos arena, y no un conjunto de características extraídas de manera previa por parte del diseñador de la red neuronal. En cuanto a la clasificación de las partículas de arena, en este trabajo se refiere en poder determinar a través de la red neuronal convolucional características de Redondez y Esfericidad específicamente. También se presenta una alternativa para generar el conjunto de datos para el entrenamiento y validación de la red neuronal, mediante la elaboración de un algoritmo de procesamiento de imágenes que permite la generación artificial (gráfica) de partículas de arena, dado que no siempre se puede disponer de un banco de imágenes adecuado. Eje: Agentes y sistemas inteligentes. Red de Universidades con Carreras en Informática |
description |
El presente trabajo trata respecto a la utilización de redes neuronales para el reconocimiento de formas y patrones de imágenes digitales de partículas de arena, con destino al uso en procesos de fracturación hidráulica en explotación de hidrocarburos de manera no convencional (<i>Fracking</i>). Si bien, la mayor parte de las redes neuronales permiten el reconocimiento de patrones y clasificación de objetos, hay un tipo particular de redes que en la actualidad han permitido un salto importante en el procesamiento de información e imágenes, y son las redes neuronales convolucionales. Estas permiten la extracción de características directamente desde las propias imágenes sin la necesidad de un trabajo de pre-procesado. Es decir, para este caso, se usan como entradas a la red neuronal las imágenes digitales de partículas o granos arena, y no un conjunto de características extraídas de manera previa por parte del diseñador de la red neuronal. En cuanto a la clasificación de las partículas de arena, en este trabajo se refiere en poder determinar a través de la red neuronal convolucional características de Redondez y Esfericidad específicamente. También se presenta una alternativa para generar el conjunto de datos para el entrenamiento y validación de la red neuronal, mediante la elaboración de un algoritmo de procesamiento de imágenes que permite la generación artificial (gráfica) de partículas de arena, dado que no siempre se puede disponer de un banco de imágenes adecuado. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/119973 |
url |
http://sedici.unlp.edu.ar/handle/10915/119973 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-24611-3-3 info:eu-repo/semantics/altIdentifier/isbn/978-987-24611-4-0 info:eu-repo/semantics/reference/hdl/10915/119487 info:eu-repo/semantics/reference/hdl/10915/119490 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 149-154 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260499787415552 |
score |
13.13397 |