A self-adaptive recombination method in evolutionary algorithms for solving epistatic problems
- Autores
- Stark, Natalia; Salto, Carolina
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- There are many different forms of recombination operators available in literature. However, it is difficult to determine a priori which one is the best suited for a given problem. This issue encourages us to propose an adaptive evolutionary algorithm to solve the NK landscape problem, which dynamically selects the recombination operator from an operator pool during the evolution; this removes the need of specifying a single recombinator operator ad-hoc. We compare the performance of our adaptive proposal against traditional evolutionary algorithms in a numerical way. Our experiments show that the simple adaptive mechanism has a good performance among all the evaluated ones on high dimensional landscapes with an additional reduction in pretuning time.
Presentado en XII Workshop Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Algorithms
recombination operator; evolutionary algorithm; epistatic problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/18571
Ver los metadatos del registro completo
id |
SEDICI_b353afbf6dd075a030e9ec455aa5980d |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/18571 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A self-adaptive recombination method in evolutionary algorithms for solving epistatic problemsStark, NataliaSalto, CarolinaCiencias InformáticasAlgorithmsrecombination operator; evolutionary algorithm; epistatic problemsThere are many different forms of recombination operators available in literature. However, it is difficult to determine a priori which one is the best suited for a given problem. This issue encourages us to propose an adaptive evolutionary algorithm to solve the NK landscape problem, which dynamically selects the recombination operator from an operator pool during the evolution; this removes the need of specifying a single recombinator operator ad-hoc. We compare the performance of our adaptive proposal against traditional evolutionary algorithms in a numerical way. Our experiments show that the simple adaptive mechanism has a good performance among all the evaluated ones on high dimensional landscapes with an additional reduction in pretuning time.Presentado en XII Workshop Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2011-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1-10http://sedici.unlp.edu.ar/handle/10915/18571enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:46:09Zoai:sedici.unlp.edu.ar:10915/18571Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:46:10.12SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A self-adaptive recombination method in evolutionary algorithms for solving epistatic problems |
title |
A self-adaptive recombination method in evolutionary algorithms for solving epistatic problems |
spellingShingle |
A self-adaptive recombination method in evolutionary algorithms for solving epistatic problems Stark, Natalia Ciencias Informáticas Algorithms recombination operator; evolutionary algorithm; epistatic problems |
title_short |
A self-adaptive recombination method in evolutionary algorithms for solving epistatic problems |
title_full |
A self-adaptive recombination method in evolutionary algorithms for solving epistatic problems |
title_fullStr |
A self-adaptive recombination method in evolutionary algorithms for solving epistatic problems |
title_full_unstemmed |
A self-adaptive recombination method in evolutionary algorithms for solving epistatic problems |
title_sort |
A self-adaptive recombination method in evolutionary algorithms for solving epistatic problems |
dc.creator.none.fl_str_mv |
Stark, Natalia Salto, Carolina |
author |
Stark, Natalia |
author_facet |
Stark, Natalia Salto, Carolina |
author_role |
author |
author2 |
Salto, Carolina |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Algorithms recombination operator; evolutionary algorithm; epistatic problems |
topic |
Ciencias Informáticas Algorithms recombination operator; evolutionary algorithm; epistatic problems |
dc.description.none.fl_txt_mv |
There are many different forms of recombination operators available in literature. However, it is difficult to determine a priori which one is the best suited for a given problem. This issue encourages us to propose an adaptive evolutionary algorithm to solve the NK landscape problem, which dynamically selects the recombination operator from an operator pool during the evolution; this removes the need of specifying a single recombinator operator ad-hoc. We compare the performance of our adaptive proposal against traditional evolutionary algorithms in a numerical way. Our experiments show that the simple adaptive mechanism has a good performance among all the evaluated ones on high dimensional landscapes with an additional reduction in pretuning time. Presentado en XII Workshop Agentes y Sistemas Inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
There are many different forms of recombination operators available in literature. However, it is difficult to determine a priori which one is the best suited for a given problem. This issue encourages us to propose an adaptive evolutionary algorithm to solve the NK landscape problem, which dynamically selects the recombination operator from an operator pool during the evolution; this removes the need of specifying a single recombinator operator ad-hoc. We compare the performance of our adaptive proposal against traditional evolutionary algorithms in a numerical way. Our experiments show that the simple adaptive mechanism has a good performance among all the evaluated ones on high dimensional landscapes with an additional reduction in pretuning time. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/18571 |
url |
http://sedici.unlp.edu.ar/handle/10915/18571 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 1-10 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063884638617600 |
score |
13.22299 |