Enhancing evolutionary algorithms through recombination and parallelism

Autores
Gallard, Raúl Hector; Esquivel, Susana Cecilia
Año de publicación
2000
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Evolutionary computation (EC) has been recently recognized as a research field, which studies a new type of algorithms: Evolutionary Algorithms (EAs). These algorithms process populations of solutions as opposed to most traditional approaches which improve a single solution. All these algorithms share common features: reproduction, random variation, competition and selection of individuals. During our research it was evident that some components of EAs should be re-examined. Hence, specific topics such as multiple crossovers per couple and its enhancements, multiplicity of parents and crossovers and their application to single and multiple criteria optimization problems, adaptability, and parallel genetic algorithms, were proposed and investigated carefully. This paper show the most relevant and recent enhancements on recombination for a genetic-algorithm-based EA and migration control strategies for parallel genetic algorithms. Details of implementation and results are discussed.
I Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
evolutionary algorithms
multirecombination
strategies for migration control
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23410

id SEDICI_606c33b48ef9a894e71cc9276b0e248c
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23410
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Enhancing evolutionary algorithms through recombination and parallelismGallard, Raúl HectorEsquivel, Susana CeciliaCiencias Informáticasevolutionary algorithmsmultirecombinationstrategies for migration controlEvolutionary computation (EC) has been recently recognized as a research field, which studies a new type of algorithms: Evolutionary Algorithms (EAs). These algorithms process populations of solutions as opposed to most traditional approaches which improve a single solution. All these algorithms share common features: reproduction, random variation, competition and selection of individuals. During our research it was evident that some components of EAs should be re-examined. Hence, specific topics such as multiple crossovers per couple and its enhancements, multiplicity of parents and crossovers and their application to single and multiple criteria optimization problems, adaptability, and parallel genetic algorithms, were proposed and investigated carefully. This paper show the most relevant and recent enhancements on recombination for a genetic-algorithm-based EA and migration control strategies for parallel genetic algorithms. Details of implementation and results are discussed.I Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2000-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23410enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:36:56Zoai:sedici.unlp.edu.ar:10915/23410Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:36:57.068SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Enhancing evolutionary algorithms through recombination and parallelism
title Enhancing evolutionary algorithms through recombination and parallelism
spellingShingle Enhancing evolutionary algorithms through recombination and parallelism
Gallard, Raúl Hector
Ciencias Informáticas
evolutionary algorithms
multirecombination
strategies for migration control
title_short Enhancing evolutionary algorithms through recombination and parallelism
title_full Enhancing evolutionary algorithms through recombination and parallelism
title_fullStr Enhancing evolutionary algorithms through recombination and parallelism
title_full_unstemmed Enhancing evolutionary algorithms through recombination and parallelism
title_sort Enhancing evolutionary algorithms through recombination and parallelism
dc.creator.none.fl_str_mv Gallard, Raúl Hector
Esquivel, Susana Cecilia
author Gallard, Raúl Hector
author_facet Gallard, Raúl Hector
Esquivel, Susana Cecilia
author_role author
author2 Esquivel, Susana Cecilia
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
evolutionary algorithms
multirecombination
strategies for migration control
topic Ciencias Informáticas
evolutionary algorithms
multirecombination
strategies for migration control
dc.description.none.fl_txt_mv Evolutionary computation (EC) has been recently recognized as a research field, which studies a new type of algorithms: Evolutionary Algorithms (EAs). These algorithms process populations of solutions as opposed to most traditional approaches which improve a single solution. All these algorithms share common features: reproduction, random variation, competition and selection of individuals. During our research it was evident that some components of EAs should be re-examined. Hence, specific topics such as multiple crossovers per couple and its enhancements, multiplicity of parents and crossovers and their application to single and multiple criteria optimization problems, adaptability, and parallel genetic algorithms, were proposed and investigated carefully. This paper show the most relevant and recent enhancements on recombination for a genetic-algorithm-based EA and migration control strategies for parallel genetic algorithms. Details of implementation and results are discussed.
I Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
description Evolutionary computation (EC) has been recently recognized as a research field, which studies a new type of algorithms: Evolutionary Algorithms (EAs). These algorithms process populations of solutions as opposed to most traditional approaches which improve a single solution. All these algorithms share common features: reproduction, random variation, competition and selection of individuals. During our research it was evident that some components of EAs should be re-examined. Hence, specific topics such as multiple crossovers per couple and its enhancements, multiplicity of parents and crossovers and their application to single and multiple criteria optimization problems, adaptability, and parallel genetic algorithms, were proposed and investigated carefully. This paper show the most relevant and recent enhancements on recombination for a genetic-algorithm-based EA and migration control strategies for parallel genetic algorithms. Details of implementation and results are discussed.
publishDate 2000
dc.date.none.fl_str_mv 2000-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23410
url http://sedici.unlp.edu.ar/handle/10915/23410
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846782829279576064
score 12.982451