An analysis on selection methods and multirecombination in evolutionary search when solving the job shop scheduling problem

Autores
Stark, Natalia; Salto, Carolina; Alfonso, Hugo; Gallard, Raúl Hector
Año de publicación
2002
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Evolutionary algorithms (EAs) can be used as optimisation mechanisms. Based on the model of natural evolution, they work on populations of individuals instead of on single solutions. In this way, the search is performed in a parallel manner. During the last decades, there has been an increasing interest in evolutionary algorithms to solve scheduling problems. One important feature in these algorithms is the selection of individuals. Selection is the operation by which individuals (i.e. their chromosomes) are selected for mating. To emulate natural selection, individuals with higher fitness should be selected with higher probability, and thus it is one of the operators where the fitness plays an important role. There are many different models of selection (some are not biologically plausible). Commonly, proportional, ranking, tournament selection and stochastic universal sampling are used. EAs considered in this work are improved with a multiplicity feature to solve the job shop scheduling problems (JSSP). The algorithm applied here, multiple crossovers on multiple parents (MCMP), considers more than two parents for reproduction with the possibility to generate multiple children. This approach uses a permutation representation for the chromosome. The objective of this work is to compare the algorithms performance using different selection mechanisms and to analyse the different crossover methods developed to apply MCMP with a permutation representation.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
evolutionary algorithms
representation
selection
crossover operator
multiplicity features
ARTIFICIAL INTELLIGENCE
Scheduling
Algorithms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23008

id SEDICI_5e3485a055b9671fb0183bbdae97b061
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23008
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling An analysis on selection methods and multirecombination in evolutionary search when solving the job shop scheduling problemStark, NataliaSalto, CarolinaAlfonso, HugoGallard, Raúl HectorCiencias Informáticasevolutionary algorithmsrepresentationselectioncrossover operatormultiplicity featuresARTIFICIAL INTELLIGENCESchedulingAlgorithmsEvolutionary algorithms (EAs) can be used as optimisation mechanisms. Based on the model of natural evolution, they work on populations of individuals instead of on single solutions. In this way, the search is performed in a parallel manner. During the last decades, there has been an increasing interest in evolutionary algorithms to solve scheduling problems. One important feature in these algorithms is the selection of individuals. Selection is the operation by which individuals (i.e. their chromosomes) are selected for mating. To emulate natural selection, individuals with higher fitness should be selected with higher probability, and thus it is one of the operators where the fitness plays an important role. There are many different models of selection (some are not biologically plausible). Commonly, proportional, ranking, tournament selection and stochastic universal sampling are used. EAs considered in this work are improved with a multiplicity feature to solve the job shop scheduling problems (JSSP). The algorithm applied here, multiple crossovers on multiple parents (MCMP), considers more than two parents for reproduction with the possibility to generate multiple children. This approach uses a permutation representation for the chromosome. The objective of this work is to compare the algorithms performance using different selection mechanisms and to analyse the different crossover methods developed to apply MCMP with a permutation representation.Eje: Sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2002-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf915-925http://sedici.unlp.edu.ar/handle/10915/23008enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:16Zoai:sedici.unlp.edu.ar:10915/23008Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:17.064SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv An analysis on selection methods and multirecombination in evolutionary search when solving the job shop scheduling problem
title An analysis on selection methods and multirecombination in evolutionary search when solving the job shop scheduling problem
spellingShingle An analysis on selection methods and multirecombination in evolutionary search when solving the job shop scheduling problem
Stark, Natalia
Ciencias Informáticas
evolutionary algorithms
representation
selection
crossover operator
multiplicity features
ARTIFICIAL INTELLIGENCE
Scheduling
Algorithms
title_short An analysis on selection methods and multirecombination in evolutionary search when solving the job shop scheduling problem
title_full An analysis on selection methods and multirecombination in evolutionary search when solving the job shop scheduling problem
title_fullStr An analysis on selection methods and multirecombination in evolutionary search when solving the job shop scheduling problem
title_full_unstemmed An analysis on selection methods and multirecombination in evolutionary search when solving the job shop scheduling problem
title_sort An analysis on selection methods and multirecombination in evolutionary search when solving the job shop scheduling problem
dc.creator.none.fl_str_mv Stark, Natalia
Salto, Carolina
Alfonso, Hugo
Gallard, Raúl Hector
author Stark, Natalia
author_facet Stark, Natalia
Salto, Carolina
Alfonso, Hugo
Gallard, Raúl Hector
author_role author
author2 Salto, Carolina
Alfonso, Hugo
Gallard, Raúl Hector
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
evolutionary algorithms
representation
selection
crossover operator
multiplicity features
ARTIFICIAL INTELLIGENCE
Scheduling
Algorithms
topic Ciencias Informáticas
evolutionary algorithms
representation
selection
crossover operator
multiplicity features
ARTIFICIAL INTELLIGENCE
Scheduling
Algorithms
dc.description.none.fl_txt_mv Evolutionary algorithms (EAs) can be used as optimisation mechanisms. Based on the model of natural evolution, they work on populations of individuals instead of on single solutions. In this way, the search is performed in a parallel manner. During the last decades, there has been an increasing interest in evolutionary algorithms to solve scheduling problems. One important feature in these algorithms is the selection of individuals. Selection is the operation by which individuals (i.e. their chromosomes) are selected for mating. To emulate natural selection, individuals with higher fitness should be selected with higher probability, and thus it is one of the operators where the fitness plays an important role. There are many different models of selection (some are not biologically plausible). Commonly, proportional, ranking, tournament selection and stochastic universal sampling are used. EAs considered in this work are improved with a multiplicity feature to solve the job shop scheduling problems (JSSP). The algorithm applied here, multiple crossovers on multiple parents (MCMP), considers more than two parents for reproduction with the possibility to generate multiple children. This approach uses a permutation representation for the chromosome. The objective of this work is to compare the algorithms performance using different selection mechanisms and to analyse the different crossover methods developed to apply MCMP with a permutation representation.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description Evolutionary algorithms (EAs) can be used as optimisation mechanisms. Based on the model of natural evolution, they work on populations of individuals instead of on single solutions. In this way, the search is performed in a parallel manner. During the last decades, there has been an increasing interest in evolutionary algorithms to solve scheduling problems. One important feature in these algorithms is the selection of individuals. Selection is the operation by which individuals (i.e. their chromosomes) are selected for mating. To emulate natural selection, individuals with higher fitness should be selected with higher probability, and thus it is one of the operators where the fitness plays an important role. There are many different models of selection (some are not biologically plausible). Commonly, proportional, ranking, tournament selection and stochastic universal sampling are used. EAs considered in this work are improved with a multiplicity feature to solve the job shop scheduling problems (JSSP). The algorithm applied here, multiple crossovers on multiple parents (MCMP), considers more than two parents for reproduction with the possibility to generate multiple children. This approach uses a permutation representation for the chromosome. The objective of this work is to compare the algorithms performance using different selection mechanisms and to analyse the different crossover methods developed to apply MCMP with a permutation representation.
publishDate 2002
dc.date.none.fl_str_mv 2002-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23008
url http://sedici.unlp.edu.ar/handle/10915/23008
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
915-925
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615811792109568
score 13.069144