Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools
- Autores
- Besso, María José; Montivero, Luciana; Lacunza, Ezequiel; Argibay, María Cecilia; Abba, Martín Carlos; Furlong, Laura Inés; Colas, Eva; Gil Moreno, Antonio; Reventos, Jaume; Bello, Ricardo; Vazquez Levin, Mónica Hebe
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Endometrial cancer (EC) is the sixth most common cancer in women worldwide. Early diagnosis is critical in recurrent EC management. The present study aimed to identify biomarkers of EC early recurrence using a workflow that combined text and data mining databases (DisGeNET, Gene Expression Omnibus), a prioritization algorithm to select a set of putative candidates (ToppGene), protein-protein interaction network analyses (Search Tool for the Retrieval of Interacting Genes, cytoHubba), association analysis of selected genes with clinicopathological parameters, and survival analysis (Kaplan-Meier and Cox proportional hazard ratio analyses) using a The Cancer Genome Atlas cohort. A total of 10 genes were identified, among which the targeting protein for Xklp2 (TPX2) was the most promising independent prognostic biomarker in stage I EC. TPX2 expression (mRNA and protein) was higher (P<0.0001 and P<0.001, respectively) in ETS variant transcription factor 5-overexpressing Hec1a and Ishikawa cells, a previously reported cell model of aggressive stage I EC. In EC biopsies, TPX2 mRNA expression levels were higher (P<0.05) in high grade tumors (grade 3) compared with grade 1-2 tumors (P<0.05), in tumors with deep myometrial invasion (>50% compared with <50%; P<0.01), and in intermediate-high recurrence risk tumors compared with low-risk tumors (P<0.05). Further validation studies in larger and independent EC cohorts will contribute to confirm the prognostic value of TPX2.
Facultad de Ciencias Médicas
Centro de Investigaciones Inmunológicas Básicas y Aplicadas - Materia
-
Medicina
endometrial cancer
Bioinformatics
biomarkers
recurrence
TPX2 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/107852
Ver los metadatos del registro completo
id |
SEDICI_ac76fb4edcc36255d7ceee6779e263c6 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/107852 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics toolsBesso, María JoséMontivero, LucianaLacunza, EzequielArgibay, María CeciliaAbba, Martín CarlosFurlong, Laura InésColas, EvaGil Moreno, AntonioReventos, JaumeBello, RicardoVazquez Levin, Mónica HebeMedicinaendometrial cancerBioinformaticsbiomarkersrecurrenceTPX2Endometrial cancer (EC) is the sixth most common cancer in women worldwide. Early diagnosis is critical in recurrent EC management. The present study aimed to identify biomarkers of EC early recurrence using a workflow that combined text and data mining databases (DisGeNET, Gene Expression Omnibus), a prioritization algorithm to select a set of putative candidates (ToppGene), protein-protein interaction network analyses (Search Tool for the Retrieval of Interacting Genes, cytoHubba), association analysis of selected genes with clinicopathological parameters, and survival analysis (Kaplan-Meier and Cox proportional hazard ratio analyses) using a The Cancer Genome Atlas cohort. A total of 10 genes were identified, among which the targeting protein for Xklp2 (<i>TPX2</i>) was the most promising independent prognostic biomarker in stage I EC. <i>TPX2</i> expression (mRNA and protein) was higher (P<0.0001 and P<0.001, respectively) in ETS variant transcription factor 5-overexpressing Hec1a and Ishikawa cells, a previously reported cell model of aggressive stage I EC. In EC biopsies, <i>TPX2</i> mRNA expression levels were higher (P<0.05) in high grade tumors (grade 3) compared with grade 1-2 tumors (P<0.05), in tumors with deep myometrial invasion (>50% compared with <50%; P<0.01), and in intermediate-high recurrence risk tumors compared with low-risk tumors (P<0.05). Further validation studies in larger and independent EC cohorts will contribute to confirm the prognostic value of <i>TPX2</i>.Facultad de Ciencias MédicasCentro de Investigaciones Inmunológicas Básicas y Aplicadas2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf873-886http://sedici.unlp.edu.ar/handle/10915/107852enginfo:eu-repo/semantics/altIdentifier/url/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC7388212&blobtype=pdfinfo:eu-repo/semantics/altIdentifier/url/https://www.spandidos-publications.com/10.3892/or.2020.7648info:eu-repo/semantics/altIdentifier/issn/1791-2431info:eu-repo/semantics/altIdentifier/pmid/32705231info:eu-repo/semantics/altIdentifier/doi/10.3892/or.2020.7648info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:15:46Zoai:sedici.unlp.edu.ar:10915/107852Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:15:46.821SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools |
title |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools |
spellingShingle |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools Besso, María José Medicina endometrial cancer Bioinformatics biomarkers recurrence TPX2 |
title_short |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools |
title_full |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools |
title_fullStr |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools |
title_full_unstemmed |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools |
title_sort |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools |
dc.creator.none.fl_str_mv |
Besso, María José Montivero, Luciana Lacunza, Ezequiel Argibay, María Cecilia Abba, Martín Carlos Furlong, Laura Inés Colas, Eva Gil Moreno, Antonio Reventos, Jaume Bello, Ricardo Vazquez Levin, Mónica Hebe |
author |
Besso, María José |
author_facet |
Besso, María José Montivero, Luciana Lacunza, Ezequiel Argibay, María Cecilia Abba, Martín Carlos Furlong, Laura Inés Colas, Eva Gil Moreno, Antonio Reventos, Jaume Bello, Ricardo Vazquez Levin, Mónica Hebe |
author_role |
author |
author2 |
Montivero, Luciana Lacunza, Ezequiel Argibay, María Cecilia Abba, Martín Carlos Furlong, Laura Inés Colas, Eva Gil Moreno, Antonio Reventos, Jaume Bello, Ricardo Vazquez Levin, Mónica Hebe |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Medicina endometrial cancer Bioinformatics biomarkers recurrence TPX2 |
topic |
Medicina endometrial cancer Bioinformatics biomarkers recurrence TPX2 |
dc.description.none.fl_txt_mv |
Endometrial cancer (EC) is the sixth most common cancer in women worldwide. Early diagnosis is critical in recurrent EC management. The present study aimed to identify biomarkers of EC early recurrence using a workflow that combined text and data mining databases (DisGeNET, Gene Expression Omnibus), a prioritization algorithm to select a set of putative candidates (ToppGene), protein-protein interaction network analyses (Search Tool for the Retrieval of Interacting Genes, cytoHubba), association analysis of selected genes with clinicopathological parameters, and survival analysis (Kaplan-Meier and Cox proportional hazard ratio analyses) using a The Cancer Genome Atlas cohort. A total of 10 genes were identified, among which the targeting protein for Xklp2 (<i>TPX2</i>) was the most promising independent prognostic biomarker in stage I EC. <i>TPX2</i> expression (mRNA and protein) was higher (P<0.0001 and P<0.001, respectively) in ETS variant transcription factor 5-overexpressing Hec1a and Ishikawa cells, a previously reported cell model of aggressive stage I EC. In EC biopsies, <i>TPX2</i> mRNA expression levels were higher (P<0.05) in high grade tumors (grade 3) compared with grade 1-2 tumors (P<0.05), in tumors with deep myometrial invasion (>50% compared with <50%; P<0.01), and in intermediate-high recurrence risk tumors compared with low-risk tumors (P<0.05). Further validation studies in larger and independent EC cohorts will contribute to confirm the prognostic value of <i>TPX2</i>. Facultad de Ciencias Médicas Centro de Investigaciones Inmunológicas Básicas y Aplicadas |
description |
Endometrial cancer (EC) is the sixth most common cancer in women worldwide. Early diagnosis is critical in recurrent EC management. The present study aimed to identify biomarkers of EC early recurrence using a workflow that combined text and data mining databases (DisGeNET, Gene Expression Omnibus), a prioritization algorithm to select a set of putative candidates (ToppGene), protein-protein interaction network analyses (Search Tool for the Retrieval of Interacting Genes, cytoHubba), association analysis of selected genes with clinicopathological parameters, and survival analysis (Kaplan-Meier and Cox proportional hazard ratio analyses) using a The Cancer Genome Atlas cohort. A total of 10 genes were identified, among which the targeting protein for Xklp2 (<i>TPX2</i>) was the most promising independent prognostic biomarker in stage I EC. <i>TPX2</i> expression (mRNA and protein) was higher (P<0.0001 and P<0.001, respectively) in ETS variant transcription factor 5-overexpressing Hec1a and Ishikawa cells, a previously reported cell model of aggressive stage I EC. In EC biopsies, <i>TPX2</i> mRNA expression levels were higher (P<0.05) in high grade tumors (grade 3) compared with grade 1-2 tumors (P<0.05), in tumors with deep myometrial invasion (>50% compared with <50%; P<0.01), and in intermediate-high recurrence risk tumors compared with low-risk tumors (P<0.05). Further validation studies in larger and independent EC cohorts will contribute to confirm the prognostic value of <i>TPX2</i>. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/107852 |
url |
http://sedici.unlp.edu.ar/handle/10915/107852 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC7388212&blobtype=pdf info:eu-repo/semantics/altIdentifier/url/https://www.spandidos-publications.com/10.3892/or.2020.7648 info:eu-repo/semantics/altIdentifier/issn/1791-2431 info:eu-repo/semantics/altIdentifier/pmid/32705231 info:eu-repo/semantics/altIdentifier/doi/10.3892/or.2020.7648 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.format.none.fl_str_mv |
application/pdf 873-886 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064215576543232 |
score |
13.22299 |