Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools
- Autores
- Besso, María José; Montivero, Luciana; Lacunza, Ezequiel; Argibay, María Cecilia; Abba, Martín Carlos; Furlong, Laura Ines; Colas, Eva; Gil Moreno, Antonio; Reventos, Jaume; Bello, Ricarlo; Vazquez, Monica Hebe
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Endometrial cancer (EC) is the sixth most common cancer in women worldwide. Early diagnosis is critical in recurrent EC management. The present study aimed to identify biomarkers of EC early recurrence using a workflow that combined text and data mining databases (DisGeNET, Gene Expression Omnibus), a prioritization algorithm to select a set of putative candidates (ToppGene), protein‑protein interaction network analyses (Search Tool for the Retrieval of Interacting Genes, cytoHubba), association analysis of selected genes with clinicopathological parameters, and survival analysis (Kaplan‑Meier and Cox proportional hazard ratio analyses) using a The Cancer Genome Atlas cohort. A total of 10 genes were identified, among which the targeting protein for Xklp2 (TPX2) was the most promising independent prognostic biomarker in stage I EC. TPX2 expression (mRNA and protein) was higher (P<0.0001 and P<0.001, respectively) in ETS variant transcription factor 5‑overexpressing Hec1a and Ishikawa cells, a previously reported cell model of aggressive stage I EC. In EC biopsies, TPX2 mRNA expression levels were higher (P<0.05) in high grade tumors (grade 3) compared with grade 1‑2 tumors (P<0.05), in tumors with deep myometrial invasion (>50% compared with <50%; P<0.01), and in intermediate‑high recurrence risk tumors compared with low‑risk tumors (P<0.05). Further validation studies in larger and independent EC cohorts will contribute to confirm the prognostic value of TPX2.
Fil: Besso, María José. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Montivero, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Lacunza, Ezequiel. Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Inmunológicas Básicas y Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Argibay, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina
Fil: Abba, Martín Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Inmunológicas Básicas y Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Furlong, Laura Ines. Universitat Pompeu Fabra; España
Fil: Colas, Eva. Universitat Autònoma de Barcelona; España
Fil: Gil Moreno, Antonio. Universitat Autònoma de Barcelona; España
Fil: Reventos, Jaume. Universitat Autònoma de Barcelona; España
Fil: Bello, Ricarlo. Universidad Nacional de Tres de Febrero. Departamento de Metodología, Estadística y Matemáticas; Argentina
Fil: Vazquez, Monica Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina - Materia
-
Molecular Oncology
Endometrial Cancer
Bioinformatics
Biomarkers - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/112581
Ver los metadatos del registro completo
id |
CONICETDig_b03f439b863bcb9fbda1a1ea2216bc72 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/112581 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics toolsBesso, María JoséMontivero, LucianaLacunza, EzequielArgibay, María CeciliaAbba, Martín CarlosFurlong, Laura InesColas, EvaGil Moreno, AntonioReventos, JaumeBello, RicarloVazquez, Monica HebeMolecular OncologyEndometrial CancerBioinformaticsBiomarkershttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Endometrial cancer (EC) is the sixth most common cancer in women worldwide. Early diagnosis is critical in recurrent EC management. The present study aimed to identify biomarkers of EC early recurrence using a workflow that combined text and data mining databases (DisGeNET, Gene Expression Omnibus), a prioritization algorithm to select a set of putative candidates (ToppGene), protein‑protein interaction network analyses (Search Tool for the Retrieval of Interacting Genes, cytoHubba), association analysis of selected genes with clinicopathological parameters, and survival analysis (Kaplan‑Meier and Cox proportional hazard ratio analyses) using a The Cancer Genome Atlas cohort. A total of 10 genes were identified, among which the targeting protein for Xklp2 (TPX2) was the most promising independent prognostic biomarker in stage I EC. TPX2 expression (mRNA and protein) was higher (P<0.0001 and P<0.001, respectively) in ETS variant transcription factor 5‑overexpressing Hec1a and Ishikawa cells, a previously reported cell model of aggressive stage I EC. In EC biopsies, TPX2 mRNA expression levels were higher (P<0.05) in high grade tumors (grade 3) compared with grade 1‑2 tumors (P<0.05), in tumors with deep myometrial invasion (>50% compared with <50%; P<0.01), and in intermediate‑high recurrence risk tumors compared with low‑risk tumors (P<0.05). Further validation studies in larger and independent EC cohorts will contribute to confirm the prognostic value of TPX2.Fil: Besso, María José. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Montivero, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Lacunza, Ezequiel. Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Inmunológicas Básicas y Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Argibay, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Abba, Martín Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Inmunológicas Básicas y Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Furlong, Laura Ines. Universitat Pompeu Fabra; EspañaFil: Colas, Eva. Universitat Autònoma de Barcelona; EspañaFil: Gil Moreno, Antonio. Universitat Autònoma de Barcelona; EspañaFil: Reventos, Jaume. Universitat Autònoma de Barcelona; EspañaFil: Bello, Ricarlo. Universidad Nacional de Tres de Febrero. Departamento de Metodología, Estadística y Matemáticas; ArgentinaFil: Vazquez, Monica Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaBoletim do Instituto de Pesca2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112581Besso, María José; Montivero, Luciana; Lacunza, Ezequiel; Argibay, María Cecilia; Abba, Martín Carlos; et al.; Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools; Boletim do Instituto de Pesca; Oncology Reports; 44; 3; 6-2020; 873-8861021-335X1791-2431CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.spandidos-publications.com/10.3892/or.2020.7648info:eu-repo/semantics/altIdentifier/doi/10.3892/or.2020.7648info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:02Zoai:ri.conicet.gov.ar:11336/112581instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:02.613CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools |
title |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools |
spellingShingle |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools Besso, María José Molecular Oncology Endometrial Cancer Bioinformatics Biomarkers |
title_short |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools |
title_full |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools |
title_fullStr |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools |
title_full_unstemmed |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools |
title_sort |
Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools |
dc.creator.none.fl_str_mv |
Besso, María José Montivero, Luciana Lacunza, Ezequiel Argibay, María Cecilia Abba, Martín Carlos Furlong, Laura Ines Colas, Eva Gil Moreno, Antonio Reventos, Jaume Bello, Ricarlo Vazquez, Monica Hebe |
author |
Besso, María José |
author_facet |
Besso, María José Montivero, Luciana Lacunza, Ezequiel Argibay, María Cecilia Abba, Martín Carlos Furlong, Laura Ines Colas, Eva Gil Moreno, Antonio Reventos, Jaume Bello, Ricarlo Vazquez, Monica Hebe |
author_role |
author |
author2 |
Montivero, Luciana Lacunza, Ezequiel Argibay, María Cecilia Abba, Martín Carlos Furlong, Laura Ines Colas, Eva Gil Moreno, Antonio Reventos, Jaume Bello, Ricarlo Vazquez, Monica Hebe |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Molecular Oncology Endometrial Cancer Bioinformatics Biomarkers |
topic |
Molecular Oncology Endometrial Cancer Bioinformatics Biomarkers |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Endometrial cancer (EC) is the sixth most common cancer in women worldwide. Early diagnosis is critical in recurrent EC management. The present study aimed to identify biomarkers of EC early recurrence using a workflow that combined text and data mining databases (DisGeNET, Gene Expression Omnibus), a prioritization algorithm to select a set of putative candidates (ToppGene), protein‑protein interaction network analyses (Search Tool for the Retrieval of Interacting Genes, cytoHubba), association analysis of selected genes with clinicopathological parameters, and survival analysis (Kaplan‑Meier and Cox proportional hazard ratio analyses) using a The Cancer Genome Atlas cohort. A total of 10 genes were identified, among which the targeting protein for Xklp2 (TPX2) was the most promising independent prognostic biomarker in stage I EC. TPX2 expression (mRNA and protein) was higher (P<0.0001 and P<0.001, respectively) in ETS variant transcription factor 5‑overexpressing Hec1a and Ishikawa cells, a previously reported cell model of aggressive stage I EC. In EC biopsies, TPX2 mRNA expression levels were higher (P<0.05) in high grade tumors (grade 3) compared with grade 1‑2 tumors (P<0.05), in tumors with deep myometrial invasion (>50% compared with <50%; P<0.01), and in intermediate‑high recurrence risk tumors compared with low‑risk tumors (P<0.05). Further validation studies in larger and independent EC cohorts will contribute to confirm the prognostic value of TPX2. Fil: Besso, María José. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina Fil: Montivero, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina Fil: Lacunza, Ezequiel. Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Inmunológicas Básicas y Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Argibay, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina Fil: Abba, Martín Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Inmunológicas Básicas y Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Furlong, Laura Ines. Universitat Pompeu Fabra; España Fil: Colas, Eva. Universitat Autònoma de Barcelona; España Fil: Gil Moreno, Antonio. Universitat Autònoma de Barcelona; España Fil: Reventos, Jaume. Universitat Autònoma de Barcelona; España Fil: Bello, Ricarlo. Universidad Nacional de Tres de Febrero. Departamento de Metodología, Estadística y Matemáticas; Argentina Fil: Vazquez, Monica Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina |
description |
Endometrial cancer (EC) is the sixth most common cancer in women worldwide. Early diagnosis is critical in recurrent EC management. The present study aimed to identify biomarkers of EC early recurrence using a workflow that combined text and data mining databases (DisGeNET, Gene Expression Omnibus), a prioritization algorithm to select a set of putative candidates (ToppGene), protein‑protein interaction network analyses (Search Tool for the Retrieval of Interacting Genes, cytoHubba), association analysis of selected genes with clinicopathological parameters, and survival analysis (Kaplan‑Meier and Cox proportional hazard ratio analyses) using a The Cancer Genome Atlas cohort. A total of 10 genes were identified, among which the targeting protein for Xklp2 (TPX2) was the most promising independent prognostic biomarker in stage I EC. TPX2 expression (mRNA and protein) was higher (P<0.0001 and P<0.001, respectively) in ETS variant transcription factor 5‑overexpressing Hec1a and Ishikawa cells, a previously reported cell model of aggressive stage I EC. In EC biopsies, TPX2 mRNA expression levels were higher (P<0.05) in high grade tumors (grade 3) compared with grade 1‑2 tumors (P<0.05), in tumors with deep myometrial invasion (>50% compared with <50%; P<0.01), and in intermediate‑high recurrence risk tumors compared with low‑risk tumors (P<0.05). Further validation studies in larger and independent EC cohorts will contribute to confirm the prognostic value of TPX2. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/112581 Besso, María José; Montivero, Luciana; Lacunza, Ezequiel; Argibay, María Cecilia; Abba, Martín Carlos; et al.; Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools; Boletim do Instituto de Pesca; Oncology Reports; 44; 3; 6-2020; 873-886 1021-335X 1791-2431 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/112581 |
identifier_str_mv |
Besso, María José; Montivero, Luciana; Lacunza, Ezequiel; Argibay, María Cecilia; Abba, Martín Carlos; et al.; Identification of early stage recurrence endometrial cancer biomarkers using bioinformatics tools; Boletim do Instituto de Pesca; Oncology Reports; 44; 3; 6-2020; 873-886 1021-335X 1791-2431 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.spandidos-publications.com/10.3892/or.2020.7648 info:eu-repo/semantics/altIdentifier/doi/10.3892/or.2020.7648 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Boletim do Instituto de Pesca |
publisher.none.fl_str_mv |
Boletim do Instituto de Pesca |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269986824912896 |
score |
13.13397 |