Fast GPU audio identification
- Autores
- Miranda, Natalia Carolina; Piccoli, María Fabiana; Chávez, Edgar; Camarena Ibarrola, Antonio
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Audio identification consist in the ability to pair audio signals of the same perceptual nature. In other words, the aim is to be able to compare an audio signal with a modified versions perceptually equivalent. To accomplish that, an audio fingerprint is extracted from the signals and only the fingerprints are compared to asses the similarity. Some guarantee have to be given about the equivalence between comparing audio fingerprints and perceptually comparing the signals. In designing AFPs, a dense representation is more robust than a sparse one. A dense representation also imply more compute cycles and hence a slower processing speed. To speedup the computing of a very dense audio fingerprint, able to stand stable under noise, re-recording, low-pass filtering, etc., we propose the use of a massive parallel architecture based on the Graphics Processing Unit (GPU) with the CUDA programming kit. We prove experimentally that even with a relatively small GPU and using a single core in the GPU, we are able to obtain a notable speedup per core in a GPU/CPU model. We compared our FFT implementation against state of the art CUFFT obtaining impressive results, hence our FFT implementation can help other areas of application.
Presentado en el X Workshop Procesamiento Distribuido y Paralelo (WPDP)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
audio identification; Graphics Processing Unit (GPU) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/18925
Ver los metadatos del registro completo
| id |
SEDICI_aa5e77383018e14fc009098aeb4ba447 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/18925 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Fast GPU audio identificationMiranda, Natalia CarolinaPiccoli, María FabianaChávez, EdgarCamarena Ibarrola, AntonioCiencias Informáticasaudio identification; Graphics Processing Unit (GPU)Audio identification consist in the ability to pair audio signals of the same perceptual nature. In other words, the aim is to be able to compare an audio signal with a modified versions perceptually equivalent. To accomplish that, an audio fingerprint is extracted from the signals and only the fingerprints are compared to asses the similarity. Some guarantee have to be given about the equivalence between comparing audio fingerprints and perceptually comparing the signals. In designing AFPs, a dense representation is more robust than a sparse one. A dense representation also imply more compute cycles and hence a slower processing speed. To speedup the computing of a very dense audio fingerprint, able to stand stable under noise, re-recording, low-pass filtering, etc., we propose the use of a massive parallel architecture based on the Graphics Processing Unit (GPU) with the CUDA programming kit. We prove experimentally that even with a relatively small GPU and using a single core in the GPU, we are able to obtain a notable speedup per core in a GPU/CPU model. We compared our FFT implementation against state of the art CUFFT obtaining impressive results, hence our FFT implementation can help other areas of application.Presentado en el X Workshop Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI)2010-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf229-242http://sedici.unlp.edu.ar/handle/10915/18925enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-9474-49-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:35:17Zoai:sedici.unlp.edu.ar:10915/18925Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:35:17.338SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Fast GPU audio identification |
| title |
Fast GPU audio identification |
| spellingShingle |
Fast GPU audio identification Miranda, Natalia Carolina Ciencias Informáticas audio identification; Graphics Processing Unit (GPU) |
| title_short |
Fast GPU audio identification |
| title_full |
Fast GPU audio identification |
| title_fullStr |
Fast GPU audio identification |
| title_full_unstemmed |
Fast GPU audio identification |
| title_sort |
Fast GPU audio identification |
| dc.creator.none.fl_str_mv |
Miranda, Natalia Carolina Piccoli, María Fabiana Chávez, Edgar Camarena Ibarrola, Antonio |
| author |
Miranda, Natalia Carolina |
| author_facet |
Miranda, Natalia Carolina Piccoli, María Fabiana Chávez, Edgar Camarena Ibarrola, Antonio |
| author_role |
author |
| author2 |
Piccoli, María Fabiana Chávez, Edgar Camarena Ibarrola, Antonio |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas audio identification; Graphics Processing Unit (GPU) |
| topic |
Ciencias Informáticas audio identification; Graphics Processing Unit (GPU) |
| dc.description.none.fl_txt_mv |
Audio identification consist in the ability to pair audio signals of the same perceptual nature. In other words, the aim is to be able to compare an audio signal with a modified versions perceptually equivalent. To accomplish that, an audio fingerprint is extracted from the signals and only the fingerprints are compared to asses the similarity. Some guarantee have to be given about the equivalence between comparing audio fingerprints and perceptually comparing the signals. In designing AFPs, a dense representation is more robust than a sparse one. A dense representation also imply more compute cycles and hence a slower processing speed. To speedup the computing of a very dense audio fingerprint, able to stand stable under noise, re-recording, low-pass filtering, etc., we propose the use of a massive parallel architecture based on the Graphics Processing Unit (GPU) with the CUDA programming kit. We prove experimentally that even with a relatively small GPU and using a single core in the GPU, we are able to obtain a notable speedup per core in a GPU/CPU model. We compared our FFT implementation against state of the art CUFFT obtaining impressive results, hence our FFT implementation can help other areas of application. Presentado en el X Workshop Procesamiento Distribuido y Paralelo (WPDP) Red de Universidades con Carreras en Informática (RedUNCI) |
| description |
Audio identification consist in the ability to pair audio signals of the same perceptual nature. In other words, the aim is to be able to compare an audio signal with a modified versions perceptually equivalent. To accomplish that, an audio fingerprint is extracted from the signals and only the fingerprints are compared to asses the similarity. Some guarantee have to be given about the equivalence between comparing audio fingerprints and perceptually comparing the signals. In designing AFPs, a dense representation is more robust than a sparse one. A dense representation also imply more compute cycles and hence a slower processing speed. To speedup the computing of a very dense audio fingerprint, able to stand stable under noise, re-recording, low-pass filtering, etc., we propose the use of a massive parallel architecture based on the Graphics Processing Unit (GPU) with the CUDA programming kit. We prove experimentally that even with a relatively small GPU and using a single core in the GPU, we are able to obtain a notable speedup per core in a GPU/CPU model. We compared our FFT implementation against state of the art CUFFT obtaining impressive results, hence our FFT implementation can help other areas of application. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/18925 |
| url |
http://sedici.unlp.edu.ar/handle/10915/18925 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-9474-49-9 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf 229-242 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846782797346242560 |
| score |
12.982451 |