Fast GPU audio identification

Autores
Miranda, Natalia Carolina; Piccoli, María Fabiana; Chávez, Edgar; Camarena Ibarrola, Antonio
Año de publicación
2010
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Audio identification consist in the ability to pair audio signals of the same perceptual nature. In other words, the aim is to be able to compare an audio signal with a modified versions perceptually equivalent. To accomplish that, an audio fingerprint is extracted from the signals and only the fingerprints are compared to asses the similarity. Some guarantee have to be given about the equivalence between comparing audio fingerprints and perceptually comparing the signals. In designing AFPs, a dense representation is more robust than a sparse one. A dense representation also imply more compute cycles and hence a slower processing speed. To speedup the computing of a very dense audio fingerprint, able to stand stable under noise, re-recording, low-pass filtering, etc., we propose the use of a massive parallel architecture based on the Graphics Processing Unit (GPU) with the CUDA programming kit. We prove experimentally that even with a relatively small GPU and using a single core in the GPU, we are able to obtain a notable speedup per core in a GPU/CPU model. We compared our FFT implementation against state of the art CUFFT obtaining impressive results, hence our FFT implementation can help other areas of application.
Presentado en el X Workshop Procesamiento Distribuido y Paralelo (WPDP)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
audio identification; Graphics Processing Unit (GPU)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/18925

id SEDICI_aa5e77383018e14fc009098aeb4ba447
oai_identifier_str oai:sedici.unlp.edu.ar:10915/18925
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Fast GPU audio identificationMiranda, Natalia CarolinaPiccoli, María FabianaChávez, EdgarCamarena Ibarrola, AntonioCiencias Informáticasaudio identification; Graphics Processing Unit (GPU)Audio identification consist in the ability to pair audio signals of the same perceptual nature. In other words, the aim is to be able to compare an audio signal with a modified versions perceptually equivalent. To accomplish that, an audio fingerprint is extracted from the signals and only the fingerprints are compared to asses the similarity. Some guarantee have to be given about the equivalence between comparing audio fingerprints and perceptually comparing the signals. In designing AFPs, a dense representation is more robust than a sparse one. A dense representation also imply more compute cycles and hence a slower processing speed. To speedup the computing of a very dense audio fingerprint, able to stand stable under noise, re-recording, low-pass filtering, etc., we propose the use of a massive parallel architecture based on the Graphics Processing Unit (GPU) with the CUDA programming kit. We prove experimentally that even with a relatively small GPU and using a single core in the GPU, we are able to obtain a notable speedup per core in a GPU/CPU model. We compared our FFT implementation against state of the art CUFFT obtaining impressive results, hence our FFT implementation can help other areas of application.Presentado en el X Workshop Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI)2010-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf229-242http://sedici.unlp.edu.ar/handle/10915/18925enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-9474-49-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:35:17Zoai:sedici.unlp.edu.ar:10915/18925Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:35:17.338SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Fast GPU audio identification
title Fast GPU audio identification
spellingShingle Fast GPU audio identification
Miranda, Natalia Carolina
Ciencias Informáticas
audio identification; Graphics Processing Unit (GPU)
title_short Fast GPU audio identification
title_full Fast GPU audio identification
title_fullStr Fast GPU audio identification
title_full_unstemmed Fast GPU audio identification
title_sort Fast GPU audio identification
dc.creator.none.fl_str_mv Miranda, Natalia Carolina
Piccoli, María Fabiana
Chávez, Edgar
Camarena Ibarrola, Antonio
author Miranda, Natalia Carolina
author_facet Miranda, Natalia Carolina
Piccoli, María Fabiana
Chávez, Edgar
Camarena Ibarrola, Antonio
author_role author
author2 Piccoli, María Fabiana
Chávez, Edgar
Camarena Ibarrola, Antonio
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
audio identification; Graphics Processing Unit (GPU)
topic Ciencias Informáticas
audio identification; Graphics Processing Unit (GPU)
dc.description.none.fl_txt_mv Audio identification consist in the ability to pair audio signals of the same perceptual nature. In other words, the aim is to be able to compare an audio signal with a modified versions perceptually equivalent. To accomplish that, an audio fingerprint is extracted from the signals and only the fingerprints are compared to asses the similarity. Some guarantee have to be given about the equivalence between comparing audio fingerprints and perceptually comparing the signals. In designing AFPs, a dense representation is more robust than a sparse one. A dense representation also imply more compute cycles and hence a slower processing speed. To speedup the computing of a very dense audio fingerprint, able to stand stable under noise, re-recording, low-pass filtering, etc., we propose the use of a massive parallel architecture based on the Graphics Processing Unit (GPU) with the CUDA programming kit. We prove experimentally that even with a relatively small GPU and using a single core in the GPU, we are able to obtain a notable speedup per core in a GPU/CPU model. We compared our FFT implementation against state of the art CUFFT obtaining impressive results, hence our FFT implementation can help other areas of application.
Presentado en el X Workshop Procesamiento Distribuido y Paralelo (WPDP)
Red de Universidades con Carreras en Informática (RedUNCI)
description Audio identification consist in the ability to pair audio signals of the same perceptual nature. In other words, the aim is to be able to compare an audio signal with a modified versions perceptually equivalent. To accomplish that, an audio fingerprint is extracted from the signals and only the fingerprints are compared to asses the similarity. Some guarantee have to be given about the equivalence between comparing audio fingerprints and perceptually comparing the signals. In designing AFPs, a dense representation is more robust than a sparse one. A dense representation also imply more compute cycles and hence a slower processing speed. To speedup the computing of a very dense audio fingerprint, able to stand stable under noise, re-recording, low-pass filtering, etc., we propose the use of a massive parallel architecture based on the Graphics Processing Unit (GPU) with the CUDA programming kit. We prove experimentally that even with a relatively small GPU and using a single core in the GPU, we are able to obtain a notable speedup per core in a GPU/CPU model. We compared our FFT implementation against state of the art CUFFT obtaining impressive results, hence our FFT implementation can help other areas of application.
publishDate 2010
dc.date.none.fl_str_mv 2010-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/18925
url http://sedici.unlp.edu.ar/handle/10915/18925
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-9474-49-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
229-242
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846782797346242560
score 12.982451