Soluciones reducidas de ecuaciones tipo Douglas y proyecciones oblicuas

Autores
González, María Celeste
Año de publicación
2009
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Corach, Gustavo
Stojanoff, Demetrio
Descripción
El vínculo entre compatibilidad y ecuaciones tipo Douglas nos motivó a profundizar el estudio de estas últimas. En particular, extendimos la noción de solución reducida de Douglas de una ecuación BX = C reemplazando N(B)⊥ por cualquier complemento cerrado de N(B). Denominamos a estas nuevas soluciones, soluciones reducidas. Nuestro objetivo es estudiar las propiedades que distinguen a las soluciones reducidas. En la descripción de las soluciones reducidas, las inversas generalizadas no acotadas y la noción de ángulo entre subespacios son elementos fundamentales. La compatibilidad de un par (A, S) significa que el conjunto P(A, S) := {Q ∈ L(H) : Q2 = Q, R(Q) = S y AQ = Q*A} es no vacío. En tal caso, el concepto de solución reducida conduce naturalmente a distinguir los elementos del conjunto P(A, S) que surgen mediante soluciones reducidas de la ecuación ax = b. A tales proyecciones las llamamos proyecciones reducidas y son objeto de estudio en esta tesis.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Matemática
Matemáticas
Espacios de Hilbert
Álgebra de operador
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/2565

id SEDICI_a79f189bb06626c776110b01a27f25aa
oai_identifier_str oai:sedici.unlp.edu.ar:10915/2565
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Soluciones reducidas de ecuaciones tipo Douglas y proyecciones oblicuasGonzález, María CelesteCiencias ExactasMatemáticaMatemáticasEspacios de HilbertÁlgebra de operadorEl vínculo entre compatibilidad y ecuaciones tipo Douglas nos motivó a profundizar el estudio de estas últimas. En particular, extendimos la noción de solución reducida de Douglas de una ecuación BX = C reemplazando N(B)⊥ por cualquier complemento cerrado de N(B). Denominamos a estas nuevas soluciones, soluciones reducidas. Nuestro objetivo es estudiar las propiedades que distinguen a las soluciones reducidas. En la descripción de las soluciones reducidas, las inversas generalizadas no acotadas y la noción de ángulo entre subespacios son elementos fundamentales. La compatibilidad de un par (A, S) significa que el conjunto P(A, S) := {Q ∈ L(H) : Q<SUP>2</SUP> = Q, R(Q) = S y AQ = Q*A} es no vacío. En tal caso, el concepto de solución reducida conduce naturalmente a distinguir los elementos del conjunto P(A, S) que surgen mediante soluciones reducidas de la ecuación ax = b. A tales proyecciones las llamamos proyecciones reducidas y son objeto de estudio en esta tesis.Doctor en Ciencias Exactas, área MatemáticaUniversidad Nacional de La PlataFacultad de Ciencias ExactasCorach, GustavoStojanoff, Demetrio2009info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/2565https://doi.org/10.35537/10915/2565spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:48:55Zoai:sedici.unlp.edu.ar:10915/2565Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:48:59.073SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Soluciones reducidas de ecuaciones tipo Douglas y proyecciones oblicuas
title Soluciones reducidas de ecuaciones tipo Douglas y proyecciones oblicuas
spellingShingle Soluciones reducidas de ecuaciones tipo Douglas y proyecciones oblicuas
González, María Celeste
Ciencias Exactas
Matemática
Matemáticas
Espacios de Hilbert
Álgebra de operador
title_short Soluciones reducidas de ecuaciones tipo Douglas y proyecciones oblicuas
title_full Soluciones reducidas de ecuaciones tipo Douglas y proyecciones oblicuas
title_fullStr Soluciones reducidas de ecuaciones tipo Douglas y proyecciones oblicuas
title_full_unstemmed Soluciones reducidas de ecuaciones tipo Douglas y proyecciones oblicuas
title_sort Soluciones reducidas de ecuaciones tipo Douglas y proyecciones oblicuas
dc.creator.none.fl_str_mv González, María Celeste
author González, María Celeste
author_facet González, María Celeste
author_role author
dc.contributor.none.fl_str_mv Corach, Gustavo
Stojanoff, Demetrio
dc.subject.none.fl_str_mv Ciencias Exactas
Matemática
Matemáticas
Espacios de Hilbert
Álgebra de operador
topic Ciencias Exactas
Matemática
Matemáticas
Espacios de Hilbert
Álgebra de operador
dc.description.none.fl_txt_mv El vínculo entre compatibilidad y ecuaciones tipo Douglas nos motivó a profundizar el estudio de estas últimas. En particular, extendimos la noción de solución reducida de Douglas de una ecuación BX = C reemplazando N(B)⊥ por cualquier complemento cerrado de N(B). Denominamos a estas nuevas soluciones, soluciones reducidas. Nuestro objetivo es estudiar las propiedades que distinguen a las soluciones reducidas. En la descripción de las soluciones reducidas, las inversas generalizadas no acotadas y la noción de ángulo entre subespacios son elementos fundamentales. La compatibilidad de un par (A, S) significa que el conjunto P(A, S) := {Q ∈ L(H) : Q<SUP>2</SUP> = Q, R(Q) = S y AQ = Q*A} es no vacío. En tal caso, el concepto de solución reducida conduce naturalmente a distinguir los elementos del conjunto P(A, S) que surgen mediante soluciones reducidas de la ecuación ax = b. A tales proyecciones las llamamos proyecciones reducidas y son objeto de estudio en esta tesis.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
description El vínculo entre compatibilidad y ecuaciones tipo Douglas nos motivó a profundizar el estudio de estas últimas. En particular, extendimos la noción de solución reducida de Douglas de una ecuación BX = C reemplazando N(B)⊥ por cualquier complemento cerrado de N(B). Denominamos a estas nuevas soluciones, soluciones reducidas. Nuestro objetivo es estudiar las propiedades que distinguen a las soluciones reducidas. En la descripción de las soluciones reducidas, las inversas generalizadas no acotadas y la noción de ángulo entre subespacios son elementos fundamentales. La compatibilidad de un par (A, S) significa que el conjunto P(A, S) := {Q ∈ L(H) : Q<SUP>2</SUP> = Q, R(Q) = S y AQ = Q*A} es no vacío. En tal caso, el concepto de solución reducida conduce naturalmente a distinguir los elementos del conjunto P(A, S) que surgen mediante soluciones reducidas de la ecuación ax = b. A tales proyecciones las llamamos proyecciones reducidas y son objeto de estudio en esta tesis.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/2565
https://doi.org/10.35537/10915/2565
url http://sedici.unlp.edu.ar/handle/10915/2565
https://doi.org/10.35537/10915/2565
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615741290053632
score 13.070432