Evolutionary approaches for the parallel task scheduling problem : the representation issue

Autores
Esquivel, Susana Cecilia; Gatica, Claudia R.; Gallard, Raúl Hector
Año de publicación
2001
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The problem of how to find a schedule on m > 2 processors of equal capacity that minimises the whole processing time of independent tasks has been shown as belonging to the NP-complete class (Horowitz and Sahni [12]). Evolutionary Algorithms (EAs) have been used in the past to implement the allocation of the components (tasks) of a parallel program to processors [12], [13], [14], [16], [17]. Those approaches showed their advantages when contrasted against conventional approaches and different chromosome representations were proposed. This paper shows four algorithms to solve the problem of allocating a number of non-identical related tasks in a multiprocessor or multicomputer system. The model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are non-preemptive. Three evolutionary algorithms, using an indirect-decode representation, are contrasted with the well-known Graham’s [11] list scheduling algorithm (LSA). All of them use the conventional Single Crossover Per Couple (SCPC) approach and indirectdecode representation but they differ in what is represented by the decoders. In the first representation scheme, decoders represent processor dispatching priorities, in the second decoders represent tasks priority lists, and in the third decoders represent both processor dispatching priorities and tasks priority lists in a bipartite chromosome. Chromosome structure, genetic operators, experiments and results are discussed.
Eje: Programación concurrente
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Algorithms
Scheduling
Optimization
Parallel
Concurrent Programming
Parallel task allocation
Evolutionary algorithm
multirecombination
indirect-decode representation
List Scheduling Algorithm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23332

id SEDICI_8cbbd1fdd43cbde43a03a99629450d9a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23332
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Evolutionary approaches for the parallel task scheduling problem : the representation issueEsquivel, Susana CeciliaGatica, Claudia R.Gallard, Raúl HectorCiencias InformáticasAlgorithmsSchedulingOptimizationParallelConcurrent ProgrammingParallel task allocationEvolutionary algorithmmultirecombinationindirect-decode representationList Scheduling AlgorithmThe problem of how to find a schedule on m > 2 processors of equal capacity that minimises the whole processing time of independent tasks has been shown as belonging to the NP-complete class (Horowitz and Sahni [12]). Evolutionary Algorithms (EAs) have been used in the past to implement the allocation of the components (tasks) of a parallel program to processors [12], [13], [14], [16], [17]. Those approaches showed their advantages when contrasted against conventional approaches and different chromosome representations were proposed. This paper shows four algorithms to solve the problem of allocating a number of non-identical related tasks in a multiprocessor or multicomputer system. The model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are non-preemptive. Three evolutionary algorithms, using an indirect-decode representation, are contrasted with the well-known Graham’s [11] list scheduling algorithm (LSA). All of them use the conventional Single Crossover Per Couple (SCPC) approach and indirectdecode representation but they differ in what is represented by the decoders. In the first representation scheme, decoders represent processor dispatching priorities, in the second decoders represent tasks priority lists, and in the third decoders represent both processor dispatching priorities and tasks priority lists in a bipartite chromosome. Chromosome structure, genetic operators, experiments and results are discussed.Eje: Programación concurrenteRed de Universidades con Carreras en Informática (RedUNCI)2001-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23332enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:12Zoai:sedici.unlp.edu.ar:10915/23332Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:12.956SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Evolutionary approaches for the parallel task scheduling problem : the representation issue
title Evolutionary approaches for the parallel task scheduling problem : the representation issue
spellingShingle Evolutionary approaches for the parallel task scheduling problem : the representation issue
Esquivel, Susana Cecilia
Ciencias Informáticas
Algorithms
Scheduling
Optimization
Parallel
Concurrent Programming
Parallel task allocation
Evolutionary algorithm
multirecombination
indirect-decode representation
List Scheduling Algorithm
title_short Evolutionary approaches for the parallel task scheduling problem : the representation issue
title_full Evolutionary approaches for the parallel task scheduling problem : the representation issue
title_fullStr Evolutionary approaches for the parallel task scheduling problem : the representation issue
title_full_unstemmed Evolutionary approaches for the parallel task scheduling problem : the representation issue
title_sort Evolutionary approaches for the parallel task scheduling problem : the representation issue
dc.creator.none.fl_str_mv Esquivel, Susana Cecilia
Gatica, Claudia R.
Gallard, Raúl Hector
author Esquivel, Susana Cecilia
author_facet Esquivel, Susana Cecilia
Gatica, Claudia R.
Gallard, Raúl Hector
author_role author
author2 Gatica, Claudia R.
Gallard, Raúl Hector
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Algorithms
Scheduling
Optimization
Parallel
Concurrent Programming
Parallel task allocation
Evolutionary algorithm
multirecombination
indirect-decode representation
List Scheduling Algorithm
topic Ciencias Informáticas
Algorithms
Scheduling
Optimization
Parallel
Concurrent Programming
Parallel task allocation
Evolutionary algorithm
multirecombination
indirect-decode representation
List Scheduling Algorithm
dc.description.none.fl_txt_mv The problem of how to find a schedule on m > 2 processors of equal capacity that minimises the whole processing time of independent tasks has been shown as belonging to the NP-complete class (Horowitz and Sahni [12]). Evolutionary Algorithms (EAs) have been used in the past to implement the allocation of the components (tasks) of a parallel program to processors [12], [13], [14], [16], [17]. Those approaches showed their advantages when contrasted against conventional approaches and different chromosome representations were proposed. This paper shows four algorithms to solve the problem of allocating a number of non-identical related tasks in a multiprocessor or multicomputer system. The model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are non-preemptive. Three evolutionary algorithms, using an indirect-decode representation, are contrasted with the well-known Graham’s [11] list scheduling algorithm (LSA). All of them use the conventional Single Crossover Per Couple (SCPC) approach and indirectdecode representation but they differ in what is represented by the decoders. In the first representation scheme, decoders represent processor dispatching priorities, in the second decoders represent tasks priority lists, and in the third decoders represent both processor dispatching priorities and tasks priority lists in a bipartite chromosome. Chromosome structure, genetic operators, experiments and results are discussed.
Eje: Programación concurrente
Red de Universidades con Carreras en Informática (RedUNCI)
description The problem of how to find a schedule on m > 2 processors of equal capacity that minimises the whole processing time of independent tasks has been shown as belonging to the NP-complete class (Horowitz and Sahni [12]). Evolutionary Algorithms (EAs) have been used in the past to implement the allocation of the components (tasks) of a parallel program to processors [12], [13], [14], [16], [17]. Those approaches showed their advantages when contrasted against conventional approaches and different chromosome representations were proposed. This paper shows four algorithms to solve the problem of allocating a number of non-identical related tasks in a multiprocessor or multicomputer system. The model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are non-preemptive. Three evolutionary algorithms, using an indirect-decode representation, are contrasted with the well-known Graham’s [11] list scheduling algorithm (LSA). All of them use the conventional Single Crossover Per Couple (SCPC) approach and indirectdecode representation but they differ in what is represented by the decoders. In the first representation scheme, decoders represent processor dispatching priorities, in the second decoders represent tasks priority lists, and in the third decoders represent both processor dispatching priorities and tasks priority lists in a bipartite chromosome. Chromosome structure, genetic operators, experiments and results are discussed.
publishDate 2001
dc.date.none.fl_str_mv 2001-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23332
url http://sedici.unlp.edu.ar/handle/10915/23332
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260120680005632
score 13.13397