Evolutionary approaches for the parallel task scheduling problem : the representation issue
- Autores
- Esquivel, Susana Cecilia; Gatica, Claudia R.; Gallard, Raúl Hector
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The problem of how to find a schedule on m > 2 processors of equal capacity that minimises the whole processing time of independent tasks has been shown as belonging to the NP-complete class (Horowitz and Sahni [12]). Evolutionary Algorithms (EAs) have been used in the past to implement the allocation of the components (tasks) of a parallel program to processors [12], [13], [14], [16], [17]. Those approaches showed their advantages when contrasted against conventional approaches and different chromosome representations were proposed. This paper shows four algorithms to solve the problem of allocating a number of non-identical related tasks in a multiprocessor or multicomputer system. The model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are non-preemptive. Three evolutionary algorithms, using an indirect-decode representation, are contrasted with the well-known Graham’s [11] list scheduling algorithm (LSA). All of them use the conventional Single Crossover Per Couple (SCPC) approach and indirectdecode representation but they differ in what is represented by the decoders. In the first representation scheme, decoders represent processor dispatching priorities, in the second decoders represent tasks priority lists, and in the third decoders represent both processor dispatching priorities and tasks priority lists in a bipartite chromosome. Chromosome structure, genetic operators, experiments and results are discussed.
Eje: Programación concurrente
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Algorithms
Scheduling
Optimization
Parallel
Concurrent Programming
Parallel task allocation
Evolutionary algorithm
multirecombination
indirect-decode representation
List Scheduling Algorithm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23332
Ver los metadatos del registro completo
id |
SEDICI_8cbbd1fdd43cbde43a03a99629450d9a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23332 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Evolutionary approaches for the parallel task scheduling problem : the representation issueEsquivel, Susana CeciliaGatica, Claudia R.Gallard, Raúl HectorCiencias InformáticasAlgorithmsSchedulingOptimizationParallelConcurrent ProgrammingParallel task allocationEvolutionary algorithmmultirecombinationindirect-decode representationList Scheduling AlgorithmThe problem of how to find a schedule on m > 2 processors of equal capacity that minimises the whole processing time of independent tasks has been shown as belonging to the NP-complete class (Horowitz and Sahni [12]). Evolutionary Algorithms (EAs) have been used in the past to implement the allocation of the components (tasks) of a parallel program to processors [12], [13], [14], [16], [17]. Those approaches showed their advantages when contrasted against conventional approaches and different chromosome representations were proposed. This paper shows four algorithms to solve the problem of allocating a number of non-identical related tasks in a multiprocessor or multicomputer system. The model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are non-preemptive. Three evolutionary algorithms, using an indirect-decode representation, are contrasted with the well-known Graham’s [11] list scheduling algorithm (LSA). All of them use the conventional Single Crossover Per Couple (SCPC) approach and indirectdecode representation but they differ in what is represented by the decoders. In the first representation scheme, decoders represent processor dispatching priorities, in the second decoders represent tasks priority lists, and in the third decoders represent both processor dispatching priorities and tasks priority lists in a bipartite chromosome. Chromosome structure, genetic operators, experiments and results are discussed.Eje: Programación concurrenteRed de Universidades con Carreras en Informática (RedUNCI)2001-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23332enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:12Zoai:sedici.unlp.edu.ar:10915/23332Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:12.956SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Evolutionary approaches for the parallel task scheduling problem : the representation issue |
title |
Evolutionary approaches for the parallel task scheduling problem : the representation issue |
spellingShingle |
Evolutionary approaches for the parallel task scheduling problem : the representation issue Esquivel, Susana Cecilia Ciencias Informáticas Algorithms Scheduling Optimization Parallel Concurrent Programming Parallel task allocation Evolutionary algorithm multirecombination indirect-decode representation List Scheduling Algorithm |
title_short |
Evolutionary approaches for the parallel task scheduling problem : the representation issue |
title_full |
Evolutionary approaches for the parallel task scheduling problem : the representation issue |
title_fullStr |
Evolutionary approaches for the parallel task scheduling problem : the representation issue |
title_full_unstemmed |
Evolutionary approaches for the parallel task scheduling problem : the representation issue |
title_sort |
Evolutionary approaches for the parallel task scheduling problem : the representation issue |
dc.creator.none.fl_str_mv |
Esquivel, Susana Cecilia Gatica, Claudia R. Gallard, Raúl Hector |
author |
Esquivel, Susana Cecilia |
author_facet |
Esquivel, Susana Cecilia Gatica, Claudia R. Gallard, Raúl Hector |
author_role |
author |
author2 |
Gatica, Claudia R. Gallard, Raúl Hector |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Algorithms Scheduling Optimization Parallel Concurrent Programming Parallel task allocation Evolutionary algorithm multirecombination indirect-decode representation List Scheduling Algorithm |
topic |
Ciencias Informáticas Algorithms Scheduling Optimization Parallel Concurrent Programming Parallel task allocation Evolutionary algorithm multirecombination indirect-decode representation List Scheduling Algorithm |
dc.description.none.fl_txt_mv |
The problem of how to find a schedule on m > 2 processors of equal capacity that minimises the whole processing time of independent tasks has been shown as belonging to the NP-complete class (Horowitz and Sahni [12]). Evolutionary Algorithms (EAs) have been used in the past to implement the allocation of the components (tasks) of a parallel program to processors [12], [13], [14], [16], [17]. Those approaches showed their advantages when contrasted against conventional approaches and different chromosome representations were proposed. This paper shows four algorithms to solve the problem of allocating a number of non-identical related tasks in a multiprocessor or multicomputer system. The model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are non-preemptive. Three evolutionary algorithms, using an indirect-decode representation, are contrasted with the well-known Graham’s [11] list scheduling algorithm (LSA). All of them use the conventional Single Crossover Per Couple (SCPC) approach and indirectdecode representation but they differ in what is represented by the decoders. In the first representation scheme, decoders represent processor dispatching priorities, in the second decoders represent tasks priority lists, and in the third decoders represent both processor dispatching priorities and tasks priority lists in a bipartite chromosome. Chromosome structure, genetic operators, experiments and results are discussed. Eje: Programación concurrente Red de Universidades con Carreras en Informática (RedUNCI) |
description |
The problem of how to find a schedule on m > 2 processors of equal capacity that minimises the whole processing time of independent tasks has been shown as belonging to the NP-complete class (Horowitz and Sahni [12]). Evolutionary Algorithms (EAs) have been used in the past to implement the allocation of the components (tasks) of a parallel program to processors [12], [13], [14], [16], [17]. Those approaches showed their advantages when contrasted against conventional approaches and different chromosome representations were proposed. This paper shows four algorithms to solve the problem of allocating a number of non-identical related tasks in a multiprocessor or multicomputer system. The model assumes that the system consists of a number of identical processors and only one task may execute on a processor at a time. All schedules and tasks are non-preemptive. Three evolutionary algorithms, using an indirect-decode representation, are contrasted with the well-known Graham’s [11] list scheduling algorithm (LSA). All of them use the conventional Single Crossover Per Couple (SCPC) approach and indirectdecode representation but they differ in what is represented by the decoders. In the first representation scheme, decoders represent processor dispatching priorities, in the second decoders represent tasks priority lists, and in the third decoders represent both processor dispatching priorities and tasks priority lists in a bipartite chromosome. Chromosome structure, genetic operators, experiments and results are discussed. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23332 |
url |
http://sedici.unlp.edu.ar/handle/10915/23332 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260120680005632 |
score |
13.13397 |