Análisis comparativo de tareas de pre procesamiento de textos sobre contenido extraído de redes sociales
- Autores
- Esnaola, Leonardo; Tessore, Juan Pablo; Ramón, Hugo Dionisio; Russo, Claudia Cecilia
- Año de publicación
- 2019
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El texto que surge de la interacción entre usuarios en redes sociales suele ser más disperso que el contenido tradicional. Es decir, contiene errores ortográficos, uso informal del lenguaje, emoticones, urls y otras construcciones que no suelen estar presentes en el lenguaje formal. Dicha dispersión puede afectar el desempeño de los clasificadores de texto basados en aprendizaje automático. El presente trabajo propone medir el desempeño de diferentes tareas de preprocesamiento, aplicadas primero de manera aislada y luego combinadas, sobre contenido extraído de redes sociales. Se busca determinar cuán aptas resultan ser estas tareas para corregir errores en textos de este tipo. Para ello, en primer lugar, se determinará en qué magnitud se reduce el porcentaje de palabras “incorrectas” y, en segundo lugar, cómo impactan en la precisión final alcanzada por clasificadores basados en aprendizaje automático. Este trabajo, se enmarca en una línea de investigación más amplia que propone la construcción de un clasificador automático de opiniones utilizando algoritmos de aprendizaje automático, el cual fuera presentado previamente en otra edición de este Workshop, y que permitirá realizar análisis automáticos de bajo costo para determinar las emociones manifestadas por consumidores o usuarios acerca de productos o servicios, a partir del análisis de sus opiniones escritas. Este clasificador será entrenado a partir de los comentarios en lenguaje informal presente en redes sociales.
Eje: Bases de Datos y Minería de Datos.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
minería de textos
preprocesamiento
inteligencia artificial
redes sociales - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/76985
Ver los metadatos del registro completo
id |
SEDICI_a77ec1719cf915cd95a03911d8bdd0b1 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/76985 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Análisis comparativo de tareas de pre procesamiento de textos sobre contenido extraído de redes socialesEsnaola, LeonardoTessore, Juan PabloRamón, Hugo DionisioRusso, Claudia CeciliaCiencias Informáticasminería de textospreprocesamientointeligencia artificialredes socialesEl texto que surge de la interacción entre usuarios en redes sociales suele ser más disperso que el contenido tradicional. Es decir, contiene errores ortográficos, uso informal del lenguaje, emoticones, urls y otras construcciones que no suelen estar presentes en el lenguaje formal. Dicha dispersión puede afectar el desempeño de los clasificadores de texto basados en aprendizaje automático. El presente trabajo propone medir el desempeño de diferentes tareas de preprocesamiento, aplicadas primero de manera aislada y luego combinadas, sobre contenido extraído de redes sociales. Se busca determinar cuán aptas resultan ser estas tareas para corregir errores en textos de este tipo. Para ello, en primer lugar, se determinará en qué magnitud se reduce el porcentaje de palabras “incorrectas” y, en segundo lugar, cómo impactan en la precisión final alcanzada por clasificadores basados en aprendizaje automático. Este trabajo, se enmarca en una línea de investigación más amplia que propone la construcción de un clasificador automático de opiniones utilizando algoritmos de aprendizaje automático, el cual fuera presentado previamente en otra edición de este Workshop, y que permitirá realizar análisis automáticos de bajo costo para determinar las emociones manifestadas por consumidores o usuarios acerca de productos o servicios, a partir del análisis de sus opiniones escritas. Este clasificador será entrenado a partir de los comentarios en lenguaje informal presente en redes sociales.Eje: Bases de Datos y Minería de Datos.Red de Universidades con Carreras en Informática2019-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/76985spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-3984-85-3info:eu-repo/semantics/reference/hdl/10915/76941info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:54:32Zoai:sedici.unlp.edu.ar:10915/76985Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:54:32.618SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Análisis comparativo de tareas de pre procesamiento de textos sobre contenido extraído de redes sociales |
title |
Análisis comparativo de tareas de pre procesamiento de textos sobre contenido extraído de redes sociales |
spellingShingle |
Análisis comparativo de tareas de pre procesamiento de textos sobre contenido extraído de redes sociales Esnaola, Leonardo Ciencias Informáticas minería de textos preprocesamiento inteligencia artificial redes sociales |
title_short |
Análisis comparativo de tareas de pre procesamiento de textos sobre contenido extraído de redes sociales |
title_full |
Análisis comparativo de tareas de pre procesamiento de textos sobre contenido extraído de redes sociales |
title_fullStr |
Análisis comparativo de tareas de pre procesamiento de textos sobre contenido extraído de redes sociales |
title_full_unstemmed |
Análisis comparativo de tareas de pre procesamiento de textos sobre contenido extraído de redes sociales |
title_sort |
Análisis comparativo de tareas de pre procesamiento de textos sobre contenido extraído de redes sociales |
dc.creator.none.fl_str_mv |
Esnaola, Leonardo Tessore, Juan Pablo Ramón, Hugo Dionisio Russo, Claudia Cecilia |
author |
Esnaola, Leonardo |
author_facet |
Esnaola, Leonardo Tessore, Juan Pablo Ramón, Hugo Dionisio Russo, Claudia Cecilia |
author_role |
author |
author2 |
Tessore, Juan Pablo Ramón, Hugo Dionisio Russo, Claudia Cecilia |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas minería de textos preprocesamiento inteligencia artificial redes sociales |
topic |
Ciencias Informáticas minería de textos preprocesamiento inteligencia artificial redes sociales |
dc.description.none.fl_txt_mv |
El texto que surge de la interacción entre usuarios en redes sociales suele ser más disperso que el contenido tradicional. Es decir, contiene errores ortográficos, uso informal del lenguaje, emoticones, urls y otras construcciones que no suelen estar presentes en el lenguaje formal. Dicha dispersión puede afectar el desempeño de los clasificadores de texto basados en aprendizaje automático. El presente trabajo propone medir el desempeño de diferentes tareas de preprocesamiento, aplicadas primero de manera aislada y luego combinadas, sobre contenido extraído de redes sociales. Se busca determinar cuán aptas resultan ser estas tareas para corregir errores en textos de este tipo. Para ello, en primer lugar, se determinará en qué magnitud se reduce el porcentaje de palabras “incorrectas” y, en segundo lugar, cómo impactan en la precisión final alcanzada por clasificadores basados en aprendizaje automático. Este trabajo, se enmarca en una línea de investigación más amplia que propone la construcción de un clasificador automático de opiniones utilizando algoritmos de aprendizaje automático, el cual fuera presentado previamente en otra edición de este Workshop, y que permitirá realizar análisis automáticos de bajo costo para determinar las emociones manifestadas por consumidores o usuarios acerca de productos o servicios, a partir del análisis de sus opiniones escritas. Este clasificador será entrenado a partir de los comentarios en lenguaje informal presente en redes sociales. Eje: Bases de Datos y Minería de Datos. Red de Universidades con Carreras en Informática |
description |
El texto que surge de la interacción entre usuarios en redes sociales suele ser más disperso que el contenido tradicional. Es decir, contiene errores ortográficos, uso informal del lenguaje, emoticones, urls y otras construcciones que no suelen estar presentes en el lenguaje formal. Dicha dispersión puede afectar el desempeño de los clasificadores de texto basados en aprendizaje automático. El presente trabajo propone medir el desempeño de diferentes tareas de preprocesamiento, aplicadas primero de manera aislada y luego combinadas, sobre contenido extraído de redes sociales. Se busca determinar cuán aptas resultan ser estas tareas para corregir errores en textos de este tipo. Para ello, en primer lugar, se determinará en qué magnitud se reduce el porcentaje de palabras “incorrectas” y, en segundo lugar, cómo impactan en la precisión final alcanzada por clasificadores basados en aprendizaje automático. Este trabajo, se enmarca en una línea de investigación más amplia que propone la construcción de un clasificador automático de opiniones utilizando algoritmos de aprendizaje automático, el cual fuera presentado previamente en otra edición de este Workshop, y que permitirá realizar análisis automáticos de bajo costo para determinar las emociones manifestadas por consumidores o usuarios acerca de productos o servicios, a partir del análisis de sus opiniones escritas. Este clasificador será entrenado a partir de los comentarios en lenguaje informal presente en redes sociales. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/76985 |
url |
http://sedici.unlp.edu.ar/handle/10915/76985 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-3984-85-3 info:eu-repo/semantics/reference/hdl/10915/76941 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846783133031071744 |
score |
12.982451 |