Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage

Autores
Ferrara, Gonzalo; Kanoore Edul, Vanina Siham; Martins, Enrique Francisco; Canales, Héctor Saúl; Canullán, Carlos; Murias, Gastón; Pozo, Mario Omar; Estenssoro, Elisa; Ince, Can; Dubin, Arnaldo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The alterations in O₂ extraction in hemodilution have been linked to fast red blood cell (RBC) velocity, which might affect the complete release of O₂ from Hb. Fast RBC velocity might also explain the normal mucosal-arterial Pco2 (ΔPco₂). Yet sublingual and intestinal microcirculation have not been completely characterized in extreme hemodilution. Our hypothesis was that the unchanged ΔPco₂ in hemodilution depends on the preservation of villi microcirculation. For this purpose, pentobarbital-anesthetized and mechanically ventilated sheep were submitted to stepwise hemodilution (n = 8), hemorrhage (n = 8), or no intervention (sham, n = 8). In both hypoxic groups, equivalent reductions in O₂ consumption (Vo₂) were targeted. Microcirculation was assessed by videomicroscopy, intestinal ΔPco₂ by air tonometry, and Vo₂ by expired gases analysis. Although cardiac output and superior mesenteric flow increased in hemodilution, from the very first step (Hb = 5.0 g/dl), villi functional vascular density and RBC velocity decreased (21.7 ± 0.9 vs. 15.9 ± 1.0 mm/mm² and 1,033 ± 75 vs. 850 ± 79 μm/s, P < 0.01). In the last stage (Hb = 1.2 g/dl), these variables were lower in hemodiution than in hemorrhage (11.1 ± 0.5 vs. 15.4 ± 0.9 mm/mm² and 544 ± 26 vs. 686 ± 70 μm/s, P < 0.01), and were associated with lower intestinal fractional O₂ extraction (0.61 ± 0.04 vs. 0.79 ± 0.02, P < 0.01) but preserved ΔPco₂ (5 ± 2 vs. 25 ± 4 mmHg, P < 0.01). Therefore, alterations in O₂ extraction in hemodilution seemed related to microvascular shunting, not to fast RBC velocity. The severe microvascular abnormalities suggest that normal ΔPco₂ was not dependent on CO₂ washout by the villi microcirculation. Increased perfusion in deeper intestinal layers might be an alternative explanation.
Facultad de Ciencias Médicas
Materia
Medicina
microcirculation
PCO2
hypoxia
Anemia
hemorrhage
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/130425

id SEDICI_a67b713237cb2eb6ce335eeed931b1f0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/130425
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhageFerrara, GonzaloKanoore Edul, Vanina SihamMartins, Enrique FranciscoCanales, Héctor SaúlCanullán, CarlosMurias, GastónPozo, Mario OmarEstenssoro, ElisaInce, CanDubin, ArnaldoMedicinamicrocirculationPCO2hypoxiaAnemiahemorrhageThe alterations in O₂ extraction in hemodilution have been linked to fast red blood cell (RBC) velocity, which might affect the complete release of O₂ from Hb. Fast RBC velocity might also explain the normal mucosal-arterial Pco2 (ΔPco₂). Yet sublingual and intestinal microcirculation have not been completely characterized in extreme hemodilution. Our hypothesis was that the unchanged ΔPco₂ in hemodilution depends on the preservation of villi microcirculation. For this purpose, pentobarbital-anesthetized and mechanically ventilated sheep were submitted to stepwise hemodilution (n = 8), hemorrhage (n = 8), or no intervention (sham, n = 8). In both hypoxic groups, equivalent reductions in O₂ consumption (Vo₂) were targeted. Microcirculation was assessed by videomicroscopy, intestinal ΔPco₂ by air tonometry, and Vo₂ by expired gases analysis. Although cardiac output and superior mesenteric flow increased in hemodilution, from the very first step (Hb = 5.0 g/dl), villi functional vascular density and RBC velocity decreased (21.7 ± 0.9 vs. 15.9 ± 1.0 mm/mm² and 1,033 ± 75 vs. 850 ± 79 μm/s, P < 0.01). In the last stage (Hb = 1.2 g/dl), these variables were lower in hemodiution than in hemorrhage (11.1 ± 0.5 vs. 15.4 ± 0.9 mm/mm² and 544 ± 26 vs. 686 ± 70 μm/s, P < 0.01), and were associated with lower intestinal fractional O₂ extraction (0.61 ± 0.04 vs. 0.79 ± 0.02, P < 0.01) but preserved ΔPco₂ (5 ± 2 vs. 25 ± 4 mmHg, P < 0.01). Therefore, alterations in O₂ extraction in hemodilution seemed related to microvascular shunting, not to fast RBC velocity. The severe microvascular abnormalities suggest that normal ΔPco₂ was not dependent on CO₂ washout by the villi microcirculation. Increased perfusion in deeper intestinal layers might be an alternative explanation.Facultad de Ciencias Médicas2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1132-1140http://sedici.unlp.edu.ar/handle/10915/130425enginfo:eu-repo/semantics/altIdentifier/issn/1522-1601info:eu-repo/semantics/altIdentifier/issn/0161-7567info:eu-repo/semantics/altIdentifier/issn/8750-7587info:eu-repo/semantics/altIdentifier/doi/10.1152/japplphysiol.00007.2016info:eu-repo/semantics/altIdentifier/pmid/26989219info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:04:14Zoai:sedici.unlp.edu.ar:10915/130425Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:04:14.44SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage
title Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage
spellingShingle Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage
Ferrara, Gonzalo
Medicina
microcirculation
PCO2
hypoxia
Anemia
hemorrhage
title_short Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage
title_full Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage
title_fullStr Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage
title_full_unstemmed Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage
title_sort Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage
dc.creator.none.fl_str_mv Ferrara, Gonzalo
Kanoore Edul, Vanina Siham
Martins, Enrique Francisco
Canales, Héctor Saúl
Canullán, Carlos
Murias, Gastón
Pozo, Mario Omar
Estenssoro, Elisa
Ince, Can
Dubin, Arnaldo
author Ferrara, Gonzalo
author_facet Ferrara, Gonzalo
Kanoore Edul, Vanina Siham
Martins, Enrique Francisco
Canales, Héctor Saúl
Canullán, Carlos
Murias, Gastón
Pozo, Mario Omar
Estenssoro, Elisa
Ince, Can
Dubin, Arnaldo
author_role author
author2 Kanoore Edul, Vanina Siham
Martins, Enrique Francisco
Canales, Héctor Saúl
Canullán, Carlos
Murias, Gastón
Pozo, Mario Omar
Estenssoro, Elisa
Ince, Can
Dubin, Arnaldo
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Medicina
microcirculation
PCO2
hypoxia
Anemia
hemorrhage
topic Medicina
microcirculation
PCO2
hypoxia
Anemia
hemorrhage
dc.description.none.fl_txt_mv The alterations in O₂ extraction in hemodilution have been linked to fast red blood cell (RBC) velocity, which might affect the complete release of O₂ from Hb. Fast RBC velocity might also explain the normal mucosal-arterial Pco2 (ΔPco₂). Yet sublingual and intestinal microcirculation have not been completely characterized in extreme hemodilution. Our hypothesis was that the unchanged ΔPco₂ in hemodilution depends on the preservation of villi microcirculation. For this purpose, pentobarbital-anesthetized and mechanically ventilated sheep were submitted to stepwise hemodilution (n = 8), hemorrhage (n = 8), or no intervention (sham, n = 8). In both hypoxic groups, equivalent reductions in O₂ consumption (Vo₂) were targeted. Microcirculation was assessed by videomicroscopy, intestinal ΔPco₂ by air tonometry, and Vo₂ by expired gases analysis. Although cardiac output and superior mesenteric flow increased in hemodilution, from the very first step (Hb = 5.0 g/dl), villi functional vascular density and RBC velocity decreased (21.7 ± 0.9 vs. 15.9 ± 1.0 mm/mm² and 1,033 ± 75 vs. 850 ± 79 μm/s, P < 0.01). In the last stage (Hb = 1.2 g/dl), these variables were lower in hemodiution than in hemorrhage (11.1 ± 0.5 vs. 15.4 ± 0.9 mm/mm² and 544 ± 26 vs. 686 ± 70 μm/s, P < 0.01), and were associated with lower intestinal fractional O₂ extraction (0.61 ± 0.04 vs. 0.79 ± 0.02, P < 0.01) but preserved ΔPco₂ (5 ± 2 vs. 25 ± 4 mmHg, P < 0.01). Therefore, alterations in O₂ extraction in hemodilution seemed related to microvascular shunting, not to fast RBC velocity. The severe microvascular abnormalities suggest that normal ΔPco₂ was not dependent on CO₂ washout by the villi microcirculation. Increased perfusion in deeper intestinal layers might be an alternative explanation.
Facultad de Ciencias Médicas
description The alterations in O₂ extraction in hemodilution have been linked to fast red blood cell (RBC) velocity, which might affect the complete release of O₂ from Hb. Fast RBC velocity might also explain the normal mucosal-arterial Pco2 (ΔPco₂). Yet sublingual and intestinal microcirculation have not been completely characterized in extreme hemodilution. Our hypothesis was that the unchanged ΔPco₂ in hemodilution depends on the preservation of villi microcirculation. For this purpose, pentobarbital-anesthetized and mechanically ventilated sheep were submitted to stepwise hemodilution (n = 8), hemorrhage (n = 8), or no intervention (sham, n = 8). In both hypoxic groups, equivalent reductions in O₂ consumption (Vo₂) were targeted. Microcirculation was assessed by videomicroscopy, intestinal ΔPco₂ by air tonometry, and Vo₂ by expired gases analysis. Although cardiac output and superior mesenteric flow increased in hemodilution, from the very first step (Hb = 5.0 g/dl), villi functional vascular density and RBC velocity decreased (21.7 ± 0.9 vs. 15.9 ± 1.0 mm/mm² and 1,033 ± 75 vs. 850 ± 79 μm/s, P < 0.01). In the last stage (Hb = 1.2 g/dl), these variables were lower in hemodiution than in hemorrhage (11.1 ± 0.5 vs. 15.4 ± 0.9 mm/mm² and 544 ± 26 vs. 686 ± 70 μm/s, P < 0.01), and were associated with lower intestinal fractional O₂ extraction (0.61 ± 0.04 vs. 0.79 ± 0.02, P < 0.01) but preserved ΔPco₂ (5 ± 2 vs. 25 ± 4 mmHg, P < 0.01). Therefore, alterations in O₂ extraction in hemodilution seemed related to microvascular shunting, not to fast RBC velocity. The severe microvascular abnormalities suggest that normal ΔPco₂ was not dependent on CO₂ washout by the villi microcirculation. Increased perfusion in deeper intestinal layers might be an alternative explanation.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/130425
url http://sedici.unlp.edu.ar/handle/10915/130425
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1522-1601
info:eu-repo/semantics/altIdentifier/issn/0161-7567
info:eu-repo/semantics/altIdentifier/issn/8750-7587
info:eu-repo/semantics/altIdentifier/doi/10.1152/japplphysiol.00007.2016
info:eu-repo/semantics/altIdentifier/pmid/26989219
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1132-1140
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260541048881152
score 13.13397