Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage
- Autores
- Ferrara, Gonzalo; Kanoore Edul, Vanina Siham; Martins, Enrique Francisco; Canales, Héctor Saúl; Canullán, Carlos; Murias, Gastón; Pozo, Mario Omar; Estenssoro, Elisa; Ince, Can; Dubin, Arnaldo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The alterations in O₂ extraction in hemodilution have been linked to fast red blood cell (RBC) velocity, which might affect the complete release of O₂ from Hb. Fast RBC velocity might also explain the normal mucosal-arterial Pco2 (ΔPco₂). Yet sublingual and intestinal microcirculation have not been completely characterized in extreme hemodilution. Our hypothesis was that the unchanged ΔPco₂ in hemodilution depends on the preservation of villi microcirculation. For this purpose, pentobarbital-anesthetized and mechanically ventilated sheep were submitted to stepwise hemodilution (n = 8), hemorrhage (n = 8), or no intervention (sham, n = 8). In both hypoxic groups, equivalent reductions in O₂ consumption (Vo₂) were targeted. Microcirculation was assessed by videomicroscopy, intestinal ΔPco₂ by air tonometry, and Vo₂ by expired gases analysis. Although cardiac output and superior mesenteric flow increased in hemodilution, from the very first step (Hb = 5.0 g/dl), villi functional vascular density and RBC velocity decreased (21.7 ± 0.9 vs. 15.9 ± 1.0 mm/mm² and 1,033 ± 75 vs. 850 ± 79 μm/s, P < 0.01). In the last stage (Hb = 1.2 g/dl), these variables were lower in hemodiution than in hemorrhage (11.1 ± 0.5 vs. 15.4 ± 0.9 mm/mm² and 544 ± 26 vs. 686 ± 70 μm/s, P < 0.01), and were associated with lower intestinal fractional O₂ extraction (0.61 ± 0.04 vs. 0.79 ± 0.02, P < 0.01) but preserved ΔPco₂ (5 ± 2 vs. 25 ± 4 mmHg, P < 0.01). Therefore, alterations in O₂ extraction in hemodilution seemed related to microvascular shunting, not to fast RBC velocity. The severe microvascular abnormalities suggest that normal ΔPco₂ was not dependent on CO₂ washout by the villi microcirculation. Increased perfusion in deeper intestinal layers might be an alternative explanation.
Facultad de Ciencias Médicas - Materia
-
Medicina
microcirculation
PCO2
hypoxia
Anemia
hemorrhage - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/130425
Ver los metadatos del registro completo
id |
SEDICI_a67b713237cb2eb6ce335eeed931b1f0 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/130425 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhageFerrara, GonzaloKanoore Edul, Vanina SihamMartins, Enrique FranciscoCanales, Héctor SaúlCanullán, CarlosMurias, GastónPozo, Mario OmarEstenssoro, ElisaInce, CanDubin, ArnaldoMedicinamicrocirculationPCO2hypoxiaAnemiahemorrhageThe alterations in O₂ extraction in hemodilution have been linked to fast red blood cell (RBC) velocity, which might affect the complete release of O₂ from Hb. Fast RBC velocity might also explain the normal mucosal-arterial Pco2 (ΔPco₂). Yet sublingual and intestinal microcirculation have not been completely characterized in extreme hemodilution. Our hypothesis was that the unchanged ΔPco₂ in hemodilution depends on the preservation of villi microcirculation. For this purpose, pentobarbital-anesthetized and mechanically ventilated sheep were submitted to stepwise hemodilution (n = 8), hemorrhage (n = 8), or no intervention (sham, n = 8). In both hypoxic groups, equivalent reductions in O₂ consumption (Vo₂) were targeted. Microcirculation was assessed by videomicroscopy, intestinal ΔPco₂ by air tonometry, and Vo₂ by expired gases analysis. Although cardiac output and superior mesenteric flow increased in hemodilution, from the very first step (Hb = 5.0 g/dl), villi functional vascular density and RBC velocity decreased (21.7 ± 0.9 vs. 15.9 ± 1.0 mm/mm² and 1,033 ± 75 vs. 850 ± 79 μm/s, P < 0.01). In the last stage (Hb = 1.2 g/dl), these variables were lower in hemodiution than in hemorrhage (11.1 ± 0.5 vs. 15.4 ± 0.9 mm/mm² and 544 ± 26 vs. 686 ± 70 μm/s, P < 0.01), and were associated with lower intestinal fractional O₂ extraction (0.61 ± 0.04 vs. 0.79 ± 0.02, P < 0.01) but preserved ΔPco₂ (5 ± 2 vs. 25 ± 4 mmHg, P < 0.01). Therefore, alterations in O₂ extraction in hemodilution seemed related to microvascular shunting, not to fast RBC velocity. The severe microvascular abnormalities suggest that normal ΔPco₂ was not dependent on CO₂ washout by the villi microcirculation. Increased perfusion in deeper intestinal layers might be an alternative explanation.Facultad de Ciencias Médicas2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1132-1140http://sedici.unlp.edu.ar/handle/10915/130425enginfo:eu-repo/semantics/altIdentifier/issn/1522-1601info:eu-repo/semantics/altIdentifier/issn/0161-7567info:eu-repo/semantics/altIdentifier/issn/8750-7587info:eu-repo/semantics/altIdentifier/doi/10.1152/japplphysiol.00007.2016info:eu-repo/semantics/altIdentifier/pmid/26989219info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:04:14Zoai:sedici.unlp.edu.ar:10915/130425Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:04:14.44SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage |
title |
Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage |
spellingShingle |
Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage Ferrara, Gonzalo Medicina microcirculation PCO2 hypoxia Anemia hemorrhage |
title_short |
Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage |
title_full |
Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage |
title_fullStr |
Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage |
title_full_unstemmed |
Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage |
title_sort |
Intestinal and sublingual microcirculation are more severely compromised in hemodilution than in hemorrhage |
dc.creator.none.fl_str_mv |
Ferrara, Gonzalo Kanoore Edul, Vanina Siham Martins, Enrique Francisco Canales, Héctor Saúl Canullán, Carlos Murias, Gastón Pozo, Mario Omar Estenssoro, Elisa Ince, Can Dubin, Arnaldo |
author |
Ferrara, Gonzalo |
author_facet |
Ferrara, Gonzalo Kanoore Edul, Vanina Siham Martins, Enrique Francisco Canales, Héctor Saúl Canullán, Carlos Murias, Gastón Pozo, Mario Omar Estenssoro, Elisa Ince, Can Dubin, Arnaldo |
author_role |
author |
author2 |
Kanoore Edul, Vanina Siham Martins, Enrique Francisco Canales, Héctor Saúl Canullán, Carlos Murias, Gastón Pozo, Mario Omar Estenssoro, Elisa Ince, Can Dubin, Arnaldo |
author2_role |
author author author author author author author author author |
dc.subject.none.fl_str_mv |
Medicina microcirculation PCO2 hypoxia Anemia hemorrhage |
topic |
Medicina microcirculation PCO2 hypoxia Anemia hemorrhage |
dc.description.none.fl_txt_mv |
The alterations in O₂ extraction in hemodilution have been linked to fast red blood cell (RBC) velocity, which might affect the complete release of O₂ from Hb. Fast RBC velocity might also explain the normal mucosal-arterial Pco2 (ΔPco₂). Yet sublingual and intestinal microcirculation have not been completely characterized in extreme hemodilution. Our hypothesis was that the unchanged ΔPco₂ in hemodilution depends on the preservation of villi microcirculation. For this purpose, pentobarbital-anesthetized and mechanically ventilated sheep were submitted to stepwise hemodilution (n = 8), hemorrhage (n = 8), or no intervention (sham, n = 8). In both hypoxic groups, equivalent reductions in O₂ consumption (Vo₂) were targeted. Microcirculation was assessed by videomicroscopy, intestinal ΔPco₂ by air tonometry, and Vo₂ by expired gases analysis. Although cardiac output and superior mesenteric flow increased in hemodilution, from the very first step (Hb = 5.0 g/dl), villi functional vascular density and RBC velocity decreased (21.7 ± 0.9 vs. 15.9 ± 1.0 mm/mm² and 1,033 ± 75 vs. 850 ± 79 μm/s, P < 0.01). In the last stage (Hb = 1.2 g/dl), these variables were lower in hemodiution than in hemorrhage (11.1 ± 0.5 vs. 15.4 ± 0.9 mm/mm² and 544 ± 26 vs. 686 ± 70 μm/s, P < 0.01), and were associated with lower intestinal fractional O₂ extraction (0.61 ± 0.04 vs. 0.79 ± 0.02, P < 0.01) but preserved ΔPco₂ (5 ± 2 vs. 25 ± 4 mmHg, P < 0.01). Therefore, alterations in O₂ extraction in hemodilution seemed related to microvascular shunting, not to fast RBC velocity. The severe microvascular abnormalities suggest that normal ΔPco₂ was not dependent on CO₂ washout by the villi microcirculation. Increased perfusion in deeper intestinal layers might be an alternative explanation. Facultad de Ciencias Médicas |
description |
The alterations in O₂ extraction in hemodilution have been linked to fast red blood cell (RBC) velocity, which might affect the complete release of O₂ from Hb. Fast RBC velocity might also explain the normal mucosal-arterial Pco2 (ΔPco₂). Yet sublingual and intestinal microcirculation have not been completely characterized in extreme hemodilution. Our hypothesis was that the unchanged ΔPco₂ in hemodilution depends on the preservation of villi microcirculation. For this purpose, pentobarbital-anesthetized and mechanically ventilated sheep were submitted to stepwise hemodilution (n = 8), hemorrhage (n = 8), or no intervention (sham, n = 8). In both hypoxic groups, equivalent reductions in O₂ consumption (Vo₂) were targeted. Microcirculation was assessed by videomicroscopy, intestinal ΔPco₂ by air tonometry, and Vo₂ by expired gases analysis. Although cardiac output and superior mesenteric flow increased in hemodilution, from the very first step (Hb = 5.0 g/dl), villi functional vascular density and RBC velocity decreased (21.7 ± 0.9 vs. 15.9 ± 1.0 mm/mm² and 1,033 ± 75 vs. 850 ± 79 μm/s, P < 0.01). In the last stage (Hb = 1.2 g/dl), these variables were lower in hemodiution than in hemorrhage (11.1 ± 0.5 vs. 15.4 ± 0.9 mm/mm² and 544 ± 26 vs. 686 ± 70 μm/s, P < 0.01), and were associated with lower intestinal fractional O₂ extraction (0.61 ± 0.04 vs. 0.79 ± 0.02, P < 0.01) but preserved ΔPco₂ (5 ± 2 vs. 25 ± 4 mmHg, P < 0.01). Therefore, alterations in O₂ extraction in hemodilution seemed related to microvascular shunting, not to fast RBC velocity. The severe microvascular abnormalities suggest that normal ΔPco₂ was not dependent on CO₂ washout by the villi microcirculation. Increased perfusion in deeper intestinal layers might be an alternative explanation. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/130425 |
url |
http://sedici.unlp.edu.ar/handle/10915/130425 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1522-1601 info:eu-repo/semantics/altIdentifier/issn/0161-7567 info:eu-repo/semantics/altIdentifier/issn/8750-7587 info:eu-repo/semantics/altIdentifier/doi/10.1152/japplphysiol.00007.2016 info:eu-repo/semantics/altIdentifier/pmid/26989219 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1132-1140 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260541048881152 |
score |
13.13397 |