Systemic and microcirculatory effects of blood transfusion in experimental hemorrhagic shock

Autores
Ferrara, Gonzalo; Kanoore Edul, Vanina Siham; Canales, Héctor Saúl; Martins, Enrique Francisco; Canullán, Carlos; Murias, Gastón; Pozo, Mario Omar; Caminos Eguillor, Juan Francisco; Buscetti, María Guillermina; Ince, Can; Dubin, Arnaldo
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Background: The microvascular reperfusion injury after retransfusion has not been completely characterized. Specifically, the question of heterogeneity among different microvascular beds needs to be addressed. In addition, the identification of anaerobic metabolism is elusive. The venoarterial PCO2 to arteriovenous oxygen content difference ratio (Pv-aCO2/Ca-vO2) might be a surrogate for respiratory quotient, but this has not been validated. Therefore, our goal was to characterize sublingual and intestinal (mucosal and serosal) microvascular injury after blood resuscitation in hemorrhagic shock and its relation with O2 and CO2 metabolism. Methods: Anesthetized and mechanically ventilated sheep were assigned to stepwise bleeding and blood retransfusion (n = 10) and sham (n = 7) groups. We performed analysis of expired gases, arterial and mixed venous blood gases, and intestinal and sublingual videomicroscopy. Results: In the bleeding group during the last step of hemorrhage, and compared to the sham group, there were decreases in oxygen consumption (3.7 [2.8–4.6] vs. 6.8 [5.8–8.0] mL min−1 kg−1 , P < 0.001) and increases in respiratory quotient (0.96 [0.91–1.06] vs. 0.72 [0.69–0.77], P < 0.001). Retransfusion normalized these variables. The Pv-aCO2/CavO2 increased in the last step of bleeding (2.4 [2.0–2.8] vs. 1.1 [1.0–1.3], P < 0.001) and remained elevated after retransfusion, compared to the sham group (1.8 [1.5–2.0] vs. 1.1 [0.9–1.3], P < 0.001). Pv-aCO2/Ca-vO2 had a weak correlation with respiratory quotient (Spearman R = 0.42, P < 0.001). All the intestinal and sublingual microcirculatory variables were affected during hemorrhage and improved after retransfusion. The recovery was only complete for intestinal red blood cell velocity and sublingual total and perfused vascular densities. Conclusions: Although there were some minor differences, intestinal and sublingual microcirculation behaved similarly. Therefore, sublingual mucosa might be an adequate window to track intestinal microvascular reperfusion injury. Additionally, Pv-aCO2/Ca-vO2 was poorly correlated with respiratory quotient, and its physiologic behavior was different. Thus, it might be a misleading surrogate for anaerobic metabolism.
Facultad de Ciencias Médicas
Materia
Ciencias Médicas
Hemorrhage
Shock
Transfusion
Microcirculation
Hypoxia
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/107508

id SEDICI_b2e95c436c5af0ff002bc333d5e7e730
oai_identifier_str oai:sedici.unlp.edu.ar:10915/107508
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Systemic and microcirculatory effects of blood transfusion in experimental hemorrhagic shockFerrara, GonzaloKanoore Edul, Vanina SihamCanales, Héctor SaúlMartins, Enrique FranciscoCanullán, CarlosMurias, GastónPozo, Mario OmarCaminos Eguillor, Juan FranciscoBuscetti, María GuillerminaInce, CanDubin, ArnaldoCiencias MédicasHemorrhageShockTransfusionMicrocirculationHypoxiaBackground: The microvascular reperfusion injury after retransfusion has not been completely characterized. Specifically, the question of heterogeneity among different microvascular beds needs to be addressed. In addition, the identification of anaerobic metabolism is elusive. The venoarterial PCO2 to arteriovenous oxygen content difference ratio (Pv-aCO2/Ca-vO2) might be a surrogate for respiratory quotient, but this has not been validated. Therefore, our goal was to characterize sublingual and intestinal (mucosal and serosal) microvascular injury after blood resuscitation in hemorrhagic shock and its relation with O2 and CO2 metabolism. Methods: Anesthetized and mechanically ventilated sheep were assigned to stepwise bleeding and blood retransfusion (n = 10) and sham (n = 7) groups. We performed analysis of expired gases, arterial and mixed venous blood gases, and intestinal and sublingual videomicroscopy. Results: In the bleeding group during the last step of hemorrhage, and compared to the sham group, there were decreases in oxygen consumption (3.7 [2.8–4.6] vs. 6.8 [5.8–8.0] mL min−1 kg−1 , P < 0.001) and increases in respiratory quotient (0.96 [0.91–1.06] vs. 0.72 [0.69–0.77], P < 0.001). Retransfusion normalized these variables. The Pv-aCO2/CavO2 increased in the last step of bleeding (2.4 [2.0–2.8] vs. 1.1 [1.0–1.3], P < 0.001) and remained elevated after retransfusion, compared to the sham group (1.8 [1.5–2.0] vs. 1.1 [0.9–1.3], P < 0.001). Pv-aCO2/Ca-vO2 had a weak correlation with respiratory quotient (Spearman R = 0.42, P < 0.001). All the intestinal and sublingual microcirculatory variables were affected during hemorrhage and improved after retransfusion. The recovery was only complete for intestinal red blood cell velocity and sublingual total and perfused vascular densities. Conclusions: Although there were some minor differences, intestinal and sublingual microcirculation behaved similarly. Therefore, sublingual mucosa might be an adequate window to track intestinal microvascular reperfusion injury. Additionally, Pv-aCO2/Ca-vO2 was poorly correlated with respiratory quotient, and its physiologic behavior was different. Thus, it might be a misleading surrogate for anaerobic metabolism.Facultad de Ciencias Médicas2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/107508enginfo:eu-repo/semantics/altIdentifier/url/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC5400770&blobtype=pdfinfo:eu-repo/semantics/altIdentifier/issn/2197-425Xinfo:eu-repo/semantics/altIdentifier/pmid/28432665info:eu-repo/semantics/altIdentifier/doi/10.1186/s40635-017-0136-3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:56:06Zoai:sedici.unlp.edu.ar:10915/107508Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:56:06.988SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Systemic and microcirculatory effects of blood transfusion in experimental hemorrhagic shock
title Systemic and microcirculatory effects of blood transfusion in experimental hemorrhagic shock
spellingShingle Systemic and microcirculatory effects of blood transfusion in experimental hemorrhagic shock
Ferrara, Gonzalo
Ciencias Médicas
Hemorrhage
Shock
Transfusion
Microcirculation
Hypoxia
title_short Systemic and microcirculatory effects of blood transfusion in experimental hemorrhagic shock
title_full Systemic and microcirculatory effects of blood transfusion in experimental hemorrhagic shock
title_fullStr Systemic and microcirculatory effects of blood transfusion in experimental hemorrhagic shock
title_full_unstemmed Systemic and microcirculatory effects of blood transfusion in experimental hemorrhagic shock
title_sort Systemic and microcirculatory effects of blood transfusion in experimental hemorrhagic shock
dc.creator.none.fl_str_mv Ferrara, Gonzalo
Kanoore Edul, Vanina Siham
Canales, Héctor Saúl
Martins, Enrique Francisco
Canullán, Carlos
Murias, Gastón
Pozo, Mario Omar
Caminos Eguillor, Juan Francisco
Buscetti, María Guillermina
Ince, Can
Dubin, Arnaldo
author Ferrara, Gonzalo
author_facet Ferrara, Gonzalo
Kanoore Edul, Vanina Siham
Canales, Héctor Saúl
Martins, Enrique Francisco
Canullán, Carlos
Murias, Gastón
Pozo, Mario Omar
Caminos Eguillor, Juan Francisco
Buscetti, María Guillermina
Ince, Can
Dubin, Arnaldo
author_role author
author2 Kanoore Edul, Vanina Siham
Canales, Héctor Saúl
Martins, Enrique Francisco
Canullán, Carlos
Murias, Gastón
Pozo, Mario Omar
Caminos Eguillor, Juan Francisco
Buscetti, María Guillermina
Ince, Can
Dubin, Arnaldo
author2_role author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Médicas
Hemorrhage
Shock
Transfusion
Microcirculation
Hypoxia
topic Ciencias Médicas
Hemorrhage
Shock
Transfusion
Microcirculation
Hypoxia
dc.description.none.fl_txt_mv Background: The microvascular reperfusion injury after retransfusion has not been completely characterized. Specifically, the question of heterogeneity among different microvascular beds needs to be addressed. In addition, the identification of anaerobic metabolism is elusive. The venoarterial PCO2 to arteriovenous oxygen content difference ratio (Pv-aCO2/Ca-vO2) might be a surrogate for respiratory quotient, but this has not been validated. Therefore, our goal was to characterize sublingual and intestinal (mucosal and serosal) microvascular injury after blood resuscitation in hemorrhagic shock and its relation with O2 and CO2 metabolism. Methods: Anesthetized and mechanically ventilated sheep were assigned to stepwise bleeding and blood retransfusion (n = 10) and sham (n = 7) groups. We performed analysis of expired gases, arterial and mixed venous blood gases, and intestinal and sublingual videomicroscopy. Results: In the bleeding group during the last step of hemorrhage, and compared to the sham group, there were decreases in oxygen consumption (3.7 [2.8–4.6] vs. 6.8 [5.8–8.0] mL min−1 kg−1 , P < 0.001) and increases in respiratory quotient (0.96 [0.91–1.06] vs. 0.72 [0.69–0.77], P < 0.001). Retransfusion normalized these variables. The Pv-aCO2/CavO2 increased in the last step of bleeding (2.4 [2.0–2.8] vs. 1.1 [1.0–1.3], P < 0.001) and remained elevated after retransfusion, compared to the sham group (1.8 [1.5–2.0] vs. 1.1 [0.9–1.3], P < 0.001). Pv-aCO2/Ca-vO2 had a weak correlation with respiratory quotient (Spearman R = 0.42, P < 0.001). All the intestinal and sublingual microcirculatory variables were affected during hemorrhage and improved after retransfusion. The recovery was only complete for intestinal red blood cell velocity and sublingual total and perfused vascular densities. Conclusions: Although there were some minor differences, intestinal and sublingual microcirculation behaved similarly. Therefore, sublingual mucosa might be an adequate window to track intestinal microvascular reperfusion injury. Additionally, Pv-aCO2/Ca-vO2 was poorly correlated with respiratory quotient, and its physiologic behavior was different. Thus, it might be a misleading surrogate for anaerobic metabolism.
Facultad de Ciencias Médicas
description Background: The microvascular reperfusion injury after retransfusion has not been completely characterized. Specifically, the question of heterogeneity among different microvascular beds needs to be addressed. In addition, the identification of anaerobic metabolism is elusive. The venoarterial PCO2 to arteriovenous oxygen content difference ratio (Pv-aCO2/Ca-vO2) might be a surrogate for respiratory quotient, but this has not been validated. Therefore, our goal was to characterize sublingual and intestinal (mucosal and serosal) microvascular injury after blood resuscitation in hemorrhagic shock and its relation with O2 and CO2 metabolism. Methods: Anesthetized and mechanically ventilated sheep were assigned to stepwise bleeding and blood retransfusion (n = 10) and sham (n = 7) groups. We performed analysis of expired gases, arterial and mixed venous blood gases, and intestinal and sublingual videomicroscopy. Results: In the bleeding group during the last step of hemorrhage, and compared to the sham group, there were decreases in oxygen consumption (3.7 [2.8–4.6] vs. 6.8 [5.8–8.0] mL min−1 kg−1 , P < 0.001) and increases in respiratory quotient (0.96 [0.91–1.06] vs. 0.72 [0.69–0.77], P < 0.001). Retransfusion normalized these variables. The Pv-aCO2/CavO2 increased in the last step of bleeding (2.4 [2.0–2.8] vs. 1.1 [1.0–1.3], P < 0.001) and remained elevated after retransfusion, compared to the sham group (1.8 [1.5–2.0] vs. 1.1 [0.9–1.3], P < 0.001). Pv-aCO2/Ca-vO2 had a weak correlation with respiratory quotient (Spearman R = 0.42, P < 0.001). All the intestinal and sublingual microcirculatory variables were affected during hemorrhage and improved after retransfusion. The recovery was only complete for intestinal red blood cell velocity and sublingual total and perfused vascular densities. Conclusions: Although there were some minor differences, intestinal and sublingual microcirculation behaved similarly. Therefore, sublingual mucosa might be an adequate window to track intestinal microvascular reperfusion injury. Additionally, Pv-aCO2/Ca-vO2 was poorly correlated with respiratory quotient, and its physiologic behavior was different. Thus, it might be a misleading surrogate for anaerobic metabolism.
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/107508
url http://sedici.unlp.edu.ar/handle/10915/107508
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC5400770&blobtype=pdf
info:eu-repo/semantics/altIdentifier/issn/2197-425X
info:eu-repo/semantics/altIdentifier/pmid/28432665
info:eu-repo/semantics/altIdentifier/doi/10.1186/s40635-017-0136-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260448324354048
score 13.13397