Visualización de bifurcaciones de sistemas no lineales

Autores
Delrieux, Claudio; Padín, Mirta
Año de publicación
2000
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La Visualización Científica es una de las tecnologías derivadas de las Ciencias de la Computación que actualmente está modificando la metodología de investigación científica. Por visualización se entiende el empleo de técnicas derivadas de la Computación Gráfica utilizadas para la representación de datos científicos de diverso tipo, los cuales pueden provenir de simulaciones, mediciones, etc. [2, 3]. Una de sus áreas de aplicación más importante es en el estudio de la dinámica de sistemas no lineales [1, 7] . En efecto, gran parte de los modelos matemáticos que describen los aspectos de la realidad que son objeto de estudio, se caracterizan por no tener soluciones analíticas cerradas. Las ecuaciones del modelo describen la evolución temporal de sus variables, pero la complejidad de las mismas impide una adecuada predicción del comportamiento del sistema a partir de una determinada condición inicial. Es decir, los sistemas no lineales, pese a seguir ecuaciones determinísticas, tienen un comportamiento complejo o caótico. Entonces, una mera simulación numérica es insuficiente, dado que el comportamiento cualitativo del sistema puede comprenderse adecuadamente a partir de la estructuración topológica de la evolución temporal de sus trayectorias Dentro del estudio de los sistemas dinámicos parametrizados, uno de los problemas más significativos consiste en localizar, caracterizar y controlar la bifurcación de puntos críticos con respecto a modificaciones en los valores de los parámetros. Esto es especialmente importante en el control de bifurcaciones, donde se busca un mecanismo de realimentación para modificar las características del comportamiento del sistema cuando se varían los valores de los parámetros. En este trabajo se desarrollan técnicas que permiten representar visualmente estas características de los sistemas dinámicos [6, 8].
Eje: Computación gráfica. Visualización
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Bifurcaciones de Sistemas no Lineales
Visual
COMPUTER GRAPHICS
Visualización
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/22177

id SEDICI_a4bd78163831ba583ac501d876d285ca
oai_identifier_str oai:sedici.unlp.edu.ar:10915/22177
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Visualización de bifurcaciones de sistemas no linealesDelrieux, ClaudioPadín, MirtaCiencias InformáticasBifurcaciones de Sistemas no LinealesVisualCOMPUTER GRAPHICSVisualizaciónLa Visualización Científica es una de las tecnologías derivadas de las Ciencias de la Computación que actualmente está modificando la metodología de investigación científica. Por visualización se entiende el empleo de técnicas derivadas de la Computación Gráfica utilizadas para la representación de datos científicos de diverso tipo, los cuales pueden provenir de simulaciones, mediciones, etc. [2, 3]. Una de sus áreas de aplicación más importante es en el estudio de la dinámica de sistemas no lineales [1, 7] . En efecto, gran parte de los modelos matemáticos que describen los aspectos de la realidad que son objeto de estudio, se caracterizan por no tener soluciones analíticas cerradas. Las ecuaciones del modelo describen la evolución temporal de sus variables, pero la complejidad de las mismas impide una adecuada predicción del comportamiento del sistema a partir de una determinada condición inicial. Es decir, los sistemas no lineales, pese a seguir ecuaciones determinísticas, tienen un comportamiento complejo o caótico. Entonces, una mera simulación numérica es insuficiente, dado que el comportamiento cualitativo del sistema puede comprenderse adecuadamente a partir de la estructuración topológica de la evolución temporal de sus trayectorias Dentro del estudio de los sistemas dinámicos parametrizados, uno de los problemas más significativos consiste en localizar, caracterizar y controlar la bifurcación de puntos críticos con respecto a modificaciones en los valores de los parámetros. Esto es especialmente importante en el control de bifurcaciones, donde se busca un mecanismo de realimentación para modificar las características del comportamiento del sistema cuando se varían los valores de los parámetros. En este trabajo se desarrollan técnicas que permiten representar visualmente estas características de los sistemas dinámicos [6, 8].Eje: Computación gráfica. VisualizaciónRed de Universidades con Carreras en Informática (RedUNCI)2000-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf172-175http://sedici.unlp.edu.ar/handle/10915/22177spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:47Zoai:sedici.unlp.edu.ar:10915/22177Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:47.557SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Visualización de bifurcaciones de sistemas no lineales
title Visualización de bifurcaciones de sistemas no lineales
spellingShingle Visualización de bifurcaciones de sistemas no lineales
Delrieux, Claudio
Ciencias Informáticas
Bifurcaciones de Sistemas no Lineales
Visual
COMPUTER GRAPHICS
Visualización
title_short Visualización de bifurcaciones de sistemas no lineales
title_full Visualización de bifurcaciones de sistemas no lineales
title_fullStr Visualización de bifurcaciones de sistemas no lineales
title_full_unstemmed Visualización de bifurcaciones de sistemas no lineales
title_sort Visualización de bifurcaciones de sistemas no lineales
dc.creator.none.fl_str_mv Delrieux, Claudio
Padín, Mirta
author Delrieux, Claudio
author_facet Delrieux, Claudio
Padín, Mirta
author_role author
author2 Padín, Mirta
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Bifurcaciones de Sistemas no Lineales
Visual
COMPUTER GRAPHICS
Visualización
topic Ciencias Informáticas
Bifurcaciones de Sistemas no Lineales
Visual
COMPUTER GRAPHICS
Visualización
dc.description.none.fl_txt_mv La Visualización Científica es una de las tecnologías derivadas de las Ciencias de la Computación que actualmente está modificando la metodología de investigación científica. Por visualización se entiende el empleo de técnicas derivadas de la Computación Gráfica utilizadas para la representación de datos científicos de diverso tipo, los cuales pueden provenir de simulaciones, mediciones, etc. [2, 3]. Una de sus áreas de aplicación más importante es en el estudio de la dinámica de sistemas no lineales [1, 7] . En efecto, gran parte de los modelos matemáticos que describen los aspectos de la realidad que son objeto de estudio, se caracterizan por no tener soluciones analíticas cerradas. Las ecuaciones del modelo describen la evolución temporal de sus variables, pero la complejidad de las mismas impide una adecuada predicción del comportamiento del sistema a partir de una determinada condición inicial. Es decir, los sistemas no lineales, pese a seguir ecuaciones determinísticas, tienen un comportamiento complejo o caótico. Entonces, una mera simulación numérica es insuficiente, dado que el comportamiento cualitativo del sistema puede comprenderse adecuadamente a partir de la estructuración topológica de la evolución temporal de sus trayectorias Dentro del estudio de los sistemas dinámicos parametrizados, uno de los problemas más significativos consiste en localizar, caracterizar y controlar la bifurcación de puntos críticos con respecto a modificaciones en los valores de los parámetros. Esto es especialmente importante en el control de bifurcaciones, donde se busca un mecanismo de realimentación para modificar las características del comportamiento del sistema cuando se varían los valores de los parámetros. En este trabajo se desarrollan técnicas que permiten representar visualmente estas características de los sistemas dinámicos [6, 8].
Eje: Computación gráfica. Visualización
Red de Universidades con Carreras en Informática (RedUNCI)
description La Visualización Científica es una de las tecnologías derivadas de las Ciencias de la Computación que actualmente está modificando la metodología de investigación científica. Por visualización se entiende el empleo de técnicas derivadas de la Computación Gráfica utilizadas para la representación de datos científicos de diverso tipo, los cuales pueden provenir de simulaciones, mediciones, etc. [2, 3]. Una de sus áreas de aplicación más importante es en el estudio de la dinámica de sistemas no lineales [1, 7] . En efecto, gran parte de los modelos matemáticos que describen los aspectos de la realidad que son objeto de estudio, se caracterizan por no tener soluciones analíticas cerradas. Las ecuaciones del modelo describen la evolución temporal de sus variables, pero la complejidad de las mismas impide una adecuada predicción del comportamiento del sistema a partir de una determinada condición inicial. Es decir, los sistemas no lineales, pese a seguir ecuaciones determinísticas, tienen un comportamiento complejo o caótico. Entonces, una mera simulación numérica es insuficiente, dado que el comportamiento cualitativo del sistema puede comprenderse adecuadamente a partir de la estructuración topológica de la evolución temporal de sus trayectorias Dentro del estudio de los sistemas dinámicos parametrizados, uno de los problemas más significativos consiste en localizar, caracterizar y controlar la bifurcación de puntos críticos con respecto a modificaciones en los valores de los parámetros. Esto es especialmente importante en el control de bifurcaciones, donde se busca un mecanismo de realimentación para modificar las características del comportamiento del sistema cuando se varían los valores de los parámetros. En este trabajo se desarrollan técnicas que permiten representar visualmente estas características de los sistemas dinámicos [6, 8].
publishDate 2000
dc.date.none.fl_str_mv 2000-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/22177
url http://sedici.unlp.edu.ar/handle/10915/22177
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
172-175
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260115624820736
score 13.13397