New concepts in the neurophysiology of sleep and wakefulness

Autores
Garay, Arturo; Cardinali, Daniel P.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
reseña artículo
Estado
versión publicada
Descripción
The neural substrates of sleep and wakefulness form a highly distributed and, to some extent, redundant network, with hypocretin, monoaminergic and cholinergic systems largely promoting wakefulness and GABAergic systems in the preoptic area, hypothalamus and brainstem promoting sleep. The hypocretin/orexin system plays a special role in the promotion of wakefulness and suppression of REM sleep by providing excitatory input to the monoaminergic and cholinergic systems. Sleep is not a unitary state but involves a cyclic alternation between NREM and REM sleep; the pons is critical for generating the multiple components (ie, EEG synchronization, eye movements and muscle atonia) that characterize REM sleep. Recent findings have implicated the participation of hypothalamus, through MCH/GABA that provide a critical input to pontine generator of REM sleep. The timing of sleep and wakefulness is regulated by an interaction between the circadian pacemaker located in the hypothalamic SCN and a sleep homeostatic system whose anatomic location is yet to be definitively identified. Among various neurochemicals, extracellular AD and nNOS/NK1 accumulate in the BF as wakefulness is extended and inhibits cortically projecting cholinergic neurons, thereby influencing cortical activity. In the future, it seems reasonable to expect a spreading of these insights from basic to clinical grounds for a better understanding of the causes and mechanisms of sleep disorders and the generation of novel therapeutics in sleep medicine.
Sociedad Argentina de Fisiología
Materia
Bioquímica
REM
NREM
Monoaminergic
Cholinergic and GABAergic systems
Hypocretin
Hypothalamus
circadian pacemaker
Atonia
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/127652

id SEDICI_a44700f485fbfb646efc6cf051b14c5d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/127652
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling New concepts in the neurophysiology of sleep and wakefulnessGaray, ArturoCardinali, Daniel P.BioquímicaREMNREMMonoaminergicCholinergic and GABAergic systemsHypocretinHypothalamuscircadian pacemakerAtoniaThe neural substrates of sleep and wakefulness form a highly distributed and, to some extent, redundant network, with hypocretin, monoaminergic and cholinergic systems largely promoting wakefulness and GABAergic systems in the preoptic area, hypothalamus and brainstem promoting sleep. The hypocretin/orexin system plays a special role in the promotion of wakefulness and suppression of REM sleep by providing excitatory input to the monoaminergic and cholinergic systems. Sleep is not a unitary state but involves a cyclic alternation between NREM and REM sleep; the pons is critical for generating the multiple components (ie, EEG synchronization, eye movements and muscle atonia) that characterize REM sleep. Recent findings have implicated the participation of hypothalamus, through MCH/GABA that provide a critical input to pontine generator of REM sleep. The timing of sleep and wakefulness is regulated by an interaction between the circadian pacemaker located in the hypothalamic SCN and a sleep homeostatic system whose anatomic location is yet to be definitively identified. Among various neurochemicals, extracellular AD and nNOS/NK1 accumulate in the BF as wakefulness is extended and inhibits cortically projecting cholinergic neurons, thereby influencing cortical activity. In the future, it seems reasonable to expect a spreading of these insights from basic to clinical grounds for a better understanding of the causes and mechanisms of sleep disorders and the generation of novel therapeutics in sleep medicine.Sociedad Argentina de Fisiología2016-06info:eu-repo/semantics/reviewinfo:eu-repo/semantics/publishedVersionRevisionhttp://purl.org/coar/resource_type/c_dcae04bcinfo:ar-repo/semantics/resenaArticuloapplication/pdf26-37http://sedici.unlp.edu.ar/handle/10915/127652enginfo:eu-repo/semantics/altIdentifier/url/https://pmr.safisiol.org.ar/archive/id/85info:eu-repo/semantics/altIdentifier/issn/1669-5410info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:58Zoai:sedici.unlp.edu.ar:10915/127652Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:58.617SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv New concepts in the neurophysiology of sleep and wakefulness
title New concepts in the neurophysiology of sleep and wakefulness
spellingShingle New concepts in the neurophysiology of sleep and wakefulness
Garay, Arturo
Bioquímica
REM
NREM
Monoaminergic
Cholinergic and GABAergic systems
Hypocretin
Hypothalamus
circadian pacemaker
Atonia
title_short New concepts in the neurophysiology of sleep and wakefulness
title_full New concepts in the neurophysiology of sleep and wakefulness
title_fullStr New concepts in the neurophysiology of sleep and wakefulness
title_full_unstemmed New concepts in the neurophysiology of sleep and wakefulness
title_sort New concepts in the neurophysiology of sleep and wakefulness
dc.creator.none.fl_str_mv Garay, Arturo
Cardinali, Daniel P.
author Garay, Arturo
author_facet Garay, Arturo
Cardinali, Daniel P.
author_role author
author2 Cardinali, Daniel P.
author2_role author
dc.subject.none.fl_str_mv Bioquímica
REM
NREM
Monoaminergic
Cholinergic and GABAergic systems
Hypocretin
Hypothalamus
circadian pacemaker
Atonia
topic Bioquímica
REM
NREM
Monoaminergic
Cholinergic and GABAergic systems
Hypocretin
Hypothalamus
circadian pacemaker
Atonia
dc.description.none.fl_txt_mv The neural substrates of sleep and wakefulness form a highly distributed and, to some extent, redundant network, with hypocretin, monoaminergic and cholinergic systems largely promoting wakefulness and GABAergic systems in the preoptic area, hypothalamus and brainstem promoting sleep. The hypocretin/orexin system plays a special role in the promotion of wakefulness and suppression of REM sleep by providing excitatory input to the monoaminergic and cholinergic systems. Sleep is not a unitary state but involves a cyclic alternation between NREM and REM sleep; the pons is critical for generating the multiple components (ie, EEG synchronization, eye movements and muscle atonia) that characterize REM sleep. Recent findings have implicated the participation of hypothalamus, through MCH/GABA that provide a critical input to pontine generator of REM sleep. The timing of sleep and wakefulness is regulated by an interaction between the circadian pacemaker located in the hypothalamic SCN and a sleep homeostatic system whose anatomic location is yet to be definitively identified. Among various neurochemicals, extracellular AD and nNOS/NK1 accumulate in the BF as wakefulness is extended and inhibits cortically projecting cholinergic neurons, thereby influencing cortical activity. In the future, it seems reasonable to expect a spreading of these insights from basic to clinical grounds for a better understanding of the causes and mechanisms of sleep disorders and the generation of novel therapeutics in sleep medicine.
Sociedad Argentina de Fisiología
description The neural substrates of sleep and wakefulness form a highly distributed and, to some extent, redundant network, with hypocretin, monoaminergic and cholinergic systems largely promoting wakefulness and GABAergic systems in the preoptic area, hypothalamus and brainstem promoting sleep. The hypocretin/orexin system plays a special role in the promotion of wakefulness and suppression of REM sleep by providing excitatory input to the monoaminergic and cholinergic systems. Sleep is not a unitary state but involves a cyclic alternation between NREM and REM sleep; the pons is critical for generating the multiple components (ie, EEG synchronization, eye movements and muscle atonia) that characterize REM sleep. Recent findings have implicated the participation of hypothalamus, through MCH/GABA that provide a critical input to pontine generator of REM sleep. The timing of sleep and wakefulness is regulated by an interaction between the circadian pacemaker located in the hypothalamic SCN and a sleep homeostatic system whose anatomic location is yet to be definitively identified. Among various neurochemicals, extracellular AD and nNOS/NK1 accumulate in the BF as wakefulness is extended and inhibits cortically projecting cholinergic neurons, thereby influencing cortical activity. In the future, it seems reasonable to expect a spreading of these insights from basic to clinical grounds for a better understanding of the causes and mechanisms of sleep disorders and the generation of novel therapeutics in sleep medicine.
publishDate 2016
dc.date.none.fl_str_mv 2016-06
dc.type.none.fl_str_mv info:eu-repo/semantics/review
info:eu-repo/semantics/publishedVersion
Revision
http://purl.org/coar/resource_type/c_dcae04bc
info:ar-repo/semantics/resenaArticulo
format review
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/127652
url http://sedici.unlp.edu.ar/handle/10915/127652
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pmr.safisiol.org.ar/archive/id/85
info:eu-repo/semantics/altIdentifier/issn/1669-5410
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
26-37
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260527954264064
score 13.13397