Visualization to compare karate motion captures

Autores
Urribarri, Dana K.; Larrea, Martín Leonardo; Castro, Silvia Mabel; Puppo, Enrico
Año de publicación
2019
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Multi-dimensional time series from motion capture (MoCap) provide a rich source of data for human motion analysis, yet they are difficult to process and compare. We address MoCap data related to Karate katas, containing predefined sequences of movements, executed independently by several subjects with different timing and speed. We propose a combination of signal processing and data visualization techniques to analyze the misalignment between data from different subjects. We present a web app that implements this proposal, providing a visual comparison of time series, based on Dynamic Time Warping.
XVII Workshop de Computación Gráfica.
Red de Universidades con Carreras en Informática
Materia
Ciencias Informáticas
Dynamic Time Warping
Comparative Visualization
Data Visualization
Multidimensional Data
Motion Capture
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/90473

id SEDICI_a2d2a833853d5d0a263fcf72afc52378
oai_identifier_str oai:sedici.unlp.edu.ar:10915/90473
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Visualization to compare karate motion capturesUrribarri, Dana K.Larrea, Martín LeonardoCastro, Silvia MabelPuppo, EnricoCiencias InformáticasDynamic Time WarpingComparative VisualizationData VisualizationMultidimensional DataMotion CaptureMulti-dimensional time series from motion capture (MoCap) provide a rich source of data for human motion analysis, yet they are difficult to process and compare. We address MoCap data related to Karate katas, containing predefined sequences of movements, executed independently by several subjects with different timing and speed. We propose a combination of signal processing and data visualization techniques to analyze the misalignment between data from different subjects. We present a web app that implements this proposal, providing a visual comparison of time series, based on Dynamic Time Warping.XVII Workshop de Computación Gráfica.Red de Universidades con Carreras en Informática2019-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf446-455http://sedici.unlp.edu.ar/handle/10915/90473enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1info:eu-repo/semantics/reference/hdl/10915/90359info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:18:37Zoai:sedici.unlp.edu.ar:10915/90473Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:18:37.86SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Visualization to compare karate motion captures
title Visualization to compare karate motion captures
spellingShingle Visualization to compare karate motion captures
Urribarri, Dana K.
Ciencias Informáticas
Dynamic Time Warping
Comparative Visualization
Data Visualization
Multidimensional Data
Motion Capture
title_short Visualization to compare karate motion captures
title_full Visualization to compare karate motion captures
title_fullStr Visualization to compare karate motion captures
title_full_unstemmed Visualization to compare karate motion captures
title_sort Visualization to compare karate motion captures
dc.creator.none.fl_str_mv Urribarri, Dana K.
Larrea, Martín Leonardo
Castro, Silvia Mabel
Puppo, Enrico
author Urribarri, Dana K.
author_facet Urribarri, Dana K.
Larrea, Martín Leonardo
Castro, Silvia Mabel
Puppo, Enrico
author_role author
author2 Larrea, Martín Leonardo
Castro, Silvia Mabel
Puppo, Enrico
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Dynamic Time Warping
Comparative Visualization
Data Visualization
Multidimensional Data
Motion Capture
topic Ciencias Informáticas
Dynamic Time Warping
Comparative Visualization
Data Visualization
Multidimensional Data
Motion Capture
dc.description.none.fl_txt_mv Multi-dimensional time series from motion capture (MoCap) provide a rich source of data for human motion analysis, yet they are difficult to process and compare. We address MoCap data related to Karate katas, containing predefined sequences of movements, executed independently by several subjects with different timing and speed. We propose a combination of signal processing and data visualization techniques to analyze the misalignment between data from different subjects. We present a web app that implements this proposal, providing a visual comparison of time series, based on Dynamic Time Warping.
XVII Workshop de Computación Gráfica.
Red de Universidades con Carreras en Informática
description Multi-dimensional time series from motion capture (MoCap) provide a rich source of data for human motion analysis, yet they are difficult to process and compare. We address MoCap data related to Karate katas, containing predefined sequences of movements, executed independently by several subjects with different timing and speed. We propose a combination of signal processing and data visualization techniques to analyze the misalignment between data from different subjects. We present a web app that implements this proposal, providing a visual comparison of time series, based on Dynamic Time Warping.
publishDate 2019
dc.date.none.fl_str_mv 2019-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/90473
url http://sedici.unlp.edu.ar/handle/10915/90473
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1
info:eu-repo/semantics/reference/hdl/10915/90359
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
446-455
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616059786625024
score 13.070432