A visualization technique to assist in the comparison of large meteorological datasets

Autores
Urribarri, Dana; Larrea, Martín
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The comparison of meteorological data is a fundamental task within the techniques of meteorological forecasting due to the cyclical nature of the climate. However, interpretation of meteorological datasets can be difficult due to their large size. The goal of information visualization is to support a better understanding of the data what includes assisting the user in the data comparison process. However, few visualization techniques have been specifically developed to support the comparison process of big meteorological data. In this paper, we improved a visualization technique for large time-series comparison. The new technique is more suitable for the comparison of meteorological data.
Materia
Ciencias de la Computación
Visualization
Comparison task
Comparative visualization
Meteorological data
Time series
Time misalignment
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/11718

id CICBA_497fc6307270e68feb5aea02ab8d16a6
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/11718
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling A visualization technique to assist in the comparison of large meteorological datasetsUrribarri, DanaLarrea, MartínCiencias de la ComputaciónVisualizationComparison taskComparative visualizationMeteorological dataTime seriesTime misalignmentThe comparison of meteorological data is a fundamental task within the techniques of meteorological forecasting due to the cyclical nature of the climate. However, interpretation of meteorological datasets can be difficult due to their large size. The goal of information visualization is to support a better understanding of the data what includes assisting the user in the data comparison process. However, few visualization techniques have been specifically developed to support the comparison process of big meteorological data. In this paper, we improved a visualization technique for large time-series comparison. The new technique is more suitable for the comparison of meteorological data.2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/11718enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cag.2022.02.011info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:00Zoai:digital.cic.gba.gob.ar:11746/11718Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:00.572CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv A visualization technique to assist in the comparison of large meteorological datasets
title A visualization technique to assist in the comparison of large meteorological datasets
spellingShingle A visualization technique to assist in the comparison of large meteorological datasets
Urribarri, Dana
Ciencias de la Computación
Visualization
Comparison task
Comparative visualization
Meteorological data
Time series
Time misalignment
title_short A visualization technique to assist in the comparison of large meteorological datasets
title_full A visualization technique to assist in the comparison of large meteorological datasets
title_fullStr A visualization technique to assist in the comparison of large meteorological datasets
title_full_unstemmed A visualization technique to assist in the comparison of large meteorological datasets
title_sort A visualization technique to assist in the comparison of large meteorological datasets
dc.creator.none.fl_str_mv Urribarri, Dana
Larrea, Martín
author Urribarri, Dana
author_facet Urribarri, Dana
Larrea, Martín
author_role author
author2 Larrea, Martín
author2_role author
dc.subject.none.fl_str_mv Ciencias de la Computación
Visualization
Comparison task
Comparative visualization
Meteorological data
Time series
Time misalignment
topic Ciencias de la Computación
Visualization
Comparison task
Comparative visualization
Meteorological data
Time series
Time misalignment
dc.description.none.fl_txt_mv The comparison of meteorological data is a fundamental task within the techniques of meteorological forecasting due to the cyclical nature of the climate. However, interpretation of meteorological datasets can be difficult due to their large size. The goal of information visualization is to support a better understanding of the data what includes assisting the user in the data comparison process. However, few visualization techniques have been specifically developed to support the comparison process of big meteorological data. In this paper, we improved a visualization technique for large time-series comparison. The new technique is more suitable for the comparison of meteorological data.
description The comparison of meteorological data is a fundamental task within the techniques of meteorological forecasting due to the cyclical nature of the climate. However, interpretation of meteorological datasets can be difficult due to their large size. The goal of information visualization is to support a better understanding of the data what includes assisting the user in the data comparison process. However, few visualization techniques have been specifically developed to support the comparison process of big meteorological data. In this paper, we improved a visualization technique for large time-series comparison. The new technique is more suitable for the comparison of meteorological data.
publishDate 2022
dc.date.none.fl_str_mv 2022-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/11718
url https://digital.cic.gba.gob.ar/handle/11746/11718
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cag.2022.02.011
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1844618592728907776
score 13.070432