Visualization to compare karate motion captures

Autores
Urribarri, Dana; Larrea, Martín; Castro, Silvia Mabel; Puppo, Enrico
Año de publicación
2019
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Multi-dimensional time series from motion capture (MoCap) provide a rich source of data for human motion analysis, yet they are difficult to process and compare. We address MoCap data related to Karate katas, containing predefined sequences of movements, executed independently by several subjects with different timing and speed. We propose a combination of signal processing and data visualization techniques to analyze the misalignment between data from different subjects. We present a web app that implements this proposal, providing a visual comparison of time series, based on Dynamic Time Warping.
Materia
Ciencias de la Computación e Información
Dynamic Time Warping
Comparative Visualization
Data Visualization
Multidimensional Data
Motion Capture
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/11065

id CICBA_1d53a4d217a0a3f34cdb7f5e0ea12bec
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/11065
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Visualization to compare karate motion capturesUrribarri, DanaLarrea, MartínCastro, Silvia MabelPuppo, EnricoCiencias de la Computación e InformaciónDynamic Time WarpingComparative VisualizationData VisualizationMultidimensional DataMotion CaptureMulti-dimensional time series from motion capture (MoCap) provide a rich source of data for human motion analysis, yet they are difficult to process and compare. We address MoCap data related to Karate katas, containing predefined sequences of movements, executed independently by several subjects with different timing and speed. We propose a combination of signal processing and data visualization techniques to analyze the misalignment between data from different subjects. We present a web app that implements this proposal, providing a visual comparison of time series, based on Dynamic Time Warping.2019-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/11065enginfo:eu-repo/semantics/altIdentifier/hdl/10915/90473info:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:23Zoai:digital.cic.gba.gob.ar:11746/11065Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:24.022CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Visualization to compare karate motion captures
title Visualization to compare karate motion captures
spellingShingle Visualization to compare karate motion captures
Urribarri, Dana
Ciencias de la Computación e Información
Dynamic Time Warping
Comparative Visualization
Data Visualization
Multidimensional Data
Motion Capture
title_short Visualization to compare karate motion captures
title_full Visualization to compare karate motion captures
title_fullStr Visualization to compare karate motion captures
title_full_unstemmed Visualization to compare karate motion captures
title_sort Visualization to compare karate motion captures
dc.creator.none.fl_str_mv Urribarri, Dana
Larrea, Martín
Castro, Silvia Mabel
Puppo, Enrico
author Urribarri, Dana
author_facet Urribarri, Dana
Larrea, Martín
Castro, Silvia Mabel
Puppo, Enrico
author_role author
author2 Larrea, Martín
Castro, Silvia Mabel
Puppo, Enrico
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias de la Computación e Información
Dynamic Time Warping
Comparative Visualization
Data Visualization
Multidimensional Data
Motion Capture
topic Ciencias de la Computación e Información
Dynamic Time Warping
Comparative Visualization
Data Visualization
Multidimensional Data
Motion Capture
dc.description.none.fl_txt_mv Multi-dimensional time series from motion capture (MoCap) provide a rich source of data for human motion analysis, yet they are difficult to process and compare. We address MoCap data related to Karate katas, containing predefined sequences of movements, executed independently by several subjects with different timing and speed. We propose a combination of signal processing and data visualization techniques to analyze the misalignment between data from different subjects. We present a web app that implements this proposal, providing a visual comparison of time series, based on Dynamic Time Warping.
description Multi-dimensional time series from motion capture (MoCap) provide a rich source of data for human motion analysis, yet they are difficult to process and compare. We address MoCap data related to Karate katas, containing predefined sequences of movements, executed independently by several subjects with different timing and speed. We propose a combination of signal processing and data visualization techniques to analyze the misalignment between data from different subjects. We present a web app that implements this proposal, providing a visual comparison of time series, based on Dynamic Time Warping.
publishDate 2019
dc.date.none.fl_str_mv 2019-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/11065
url https://digital.cic.gba.gob.ar/handle/11746/11065
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/hdl/10915/90473
info:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1844618622112104448
score 13.070432