Visualization to compare karate motion captures
- Autores
- Urribarri, Dana; Larrea, Martín; Castro, Silvia Mabel; Puppo, Enrico
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Multi-dimensional time series from motion capture (MoCap) provide a rich source of data for human motion analysis, yet they are difficult to process and compare. We address MoCap data related to Karate katas, containing predefined sequences of movements, executed independently by several subjects with different timing and speed. We propose a combination of signal processing and data visualization techniques to analyze the misalignment between data from different subjects. We present a web app that implements this proposal, providing a visual comparison of time series, based on Dynamic Time Warping.
- Materia
-
Ciencias de la Computación e Información
Dynamic Time Warping
Comparative Visualization
Data Visualization
Multidimensional Data
Motion Capture - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/11065
Ver los metadatos del registro completo
id |
CICBA_1d53a4d217a0a3f34cdb7f5e0ea12bec |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/11065 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Visualization to compare karate motion capturesUrribarri, DanaLarrea, MartínCastro, Silvia MabelPuppo, EnricoCiencias de la Computación e InformaciónDynamic Time WarpingComparative VisualizationData VisualizationMultidimensional DataMotion CaptureMulti-dimensional time series from motion capture (MoCap) provide a rich source of data for human motion analysis, yet they are difficult to process and compare. We address MoCap data related to Karate katas, containing predefined sequences of movements, executed independently by several subjects with different timing and speed. We propose a combination of signal processing and data visualization techniques to analyze the misalignment between data from different subjects. We present a web app that implements this proposal, providing a visual comparison of time series, based on Dynamic Time Warping.2019-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/11065enginfo:eu-repo/semantics/altIdentifier/hdl/10915/90473info:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-29T13:40:23Zoai:digital.cic.gba.gob.ar:11746/11065Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-29 13:40:24.022CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Visualization to compare karate motion captures |
title |
Visualization to compare karate motion captures |
spellingShingle |
Visualization to compare karate motion captures Urribarri, Dana Ciencias de la Computación e Información Dynamic Time Warping Comparative Visualization Data Visualization Multidimensional Data Motion Capture |
title_short |
Visualization to compare karate motion captures |
title_full |
Visualization to compare karate motion captures |
title_fullStr |
Visualization to compare karate motion captures |
title_full_unstemmed |
Visualization to compare karate motion captures |
title_sort |
Visualization to compare karate motion captures |
dc.creator.none.fl_str_mv |
Urribarri, Dana Larrea, Martín Castro, Silvia Mabel Puppo, Enrico |
author |
Urribarri, Dana |
author_facet |
Urribarri, Dana Larrea, Martín Castro, Silvia Mabel Puppo, Enrico |
author_role |
author |
author2 |
Larrea, Martín Castro, Silvia Mabel Puppo, Enrico |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias de la Computación e Información Dynamic Time Warping Comparative Visualization Data Visualization Multidimensional Data Motion Capture |
topic |
Ciencias de la Computación e Información Dynamic Time Warping Comparative Visualization Data Visualization Multidimensional Data Motion Capture |
dc.description.none.fl_txt_mv |
Multi-dimensional time series from motion capture (MoCap) provide a rich source of data for human motion analysis, yet they are difficult to process and compare. We address MoCap data related to Karate katas, containing predefined sequences of movements, executed independently by several subjects with different timing and speed. We propose a combination of signal processing and data visualization techniques to analyze the misalignment between data from different subjects. We present a web app that implements this proposal, providing a visual comparison of time series, based on Dynamic Time Warping. |
description |
Multi-dimensional time series from motion capture (MoCap) provide a rich source of data for human motion analysis, yet they are difficult to process and compare. We address MoCap data related to Karate katas, containing predefined sequences of movements, executed independently by several subjects with different timing and speed. We propose a combination of signal processing and data visualization techniques to analyze the misalignment between data from different subjects. We present a web app that implements this proposal, providing a visual comparison of time series, based on Dynamic Time Warping. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/11065 |
url |
https://digital.cic.gba.gob.ar/handle/11746/11065 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/hdl/10915/90473 info:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1844618622112104448 |
score |
13.070432 |