Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues

Autores
Flego, Silvana; Plastino, Ángel Luis; Plastino, Ángel Ricardo
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
It is well known that a suggestive connection links Schrödinger’s equation (SE) and the information-opti- mizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the exis-tence of a Legendre transform structure underlying the SE. Such a structure leads to a first order partial dif-ferential equation (PDE) for the SE’s eigenvalues from which a complete solution for them can be obtained. We test this theory with regards to anharmonic oscillators (AHO). AHO pose a long-standing problem and received intense attention motivated by problems in quantum field theory and molecular physics. By appeal to the Cramer Rao bound we are able to Fisher-infer the energy eigenvalues without explicitly solving Schrödinger’s equation. Remarkably enough, and in contrast with standard variational approaches, our pre-sent procedure does not involve free fitting parameters.
Instituto de Física La Plata
Facultad de Ingeniería
Centro Regional de Estudios Genómicos
Materia
Física
Information theory
Fisher’s Information Measure
Legendre Transform
Quartic Anharmonic Oscillator
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/119318

id SEDICI_a1428d8aa4601862f46c966b062f5762
oai_identifier_str oai:sedici.unlp.edu.ar:10915/119318
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Direct Fisher Inference of the Quartic Oscillator’s EigenvaluesFlego, SilvanaPlastino, Ángel LuisPlastino, Ángel RicardoFísicaInformation theoryFisher’s Information MeasureLegendre TransformQuartic Anharmonic OscillatorIt is well known that a suggestive connection links Schrödinger’s equation (SE) and the information-opti- mizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the exis-tence of a Legendre transform structure underlying the SE. Such a structure leads to a first order partial dif-ferential equation (PDE) for the SE’s eigenvalues from which a complete solution for them can be obtained. We test this theory with regards to anharmonic oscillators (AHO). AHO pose a long-standing problem and received intense attention motivated by problems in quantum field theory and molecular physics. By appeal to the Cramer Rao bound we are able to Fisher-infer the energy eigenvalues without explicitly solving Schrödinger’s equation. Remarkably enough, and in contrast with standard variational approaches, our pre-sent procedure does not involve free fitting parameters.Instituto de Física La PlataFacultad de IngenieríaCentro Regional de Estudios Genómicos2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1390-1396http://sedici.unlp.edu.ar/handle/10915/119318enginfo:eu-repo/semantics/altIdentifier/issn/2153-1196info:eu-repo/semantics/altIdentifier/issn/2153-120Xinfo:eu-repo/semantics/altIdentifier/doi/10.4236/jmp.2011.211171info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:00:16Zoai:sedici.unlp.edu.ar:10915/119318Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:00:16.927SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues
title Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues
spellingShingle Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues
Flego, Silvana
Física
Information theory
Fisher’s Information Measure
Legendre Transform
Quartic Anharmonic Oscillator
title_short Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues
title_full Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues
title_fullStr Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues
title_full_unstemmed Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues
title_sort Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues
dc.creator.none.fl_str_mv Flego, Silvana
Plastino, Ángel Luis
Plastino, Ángel Ricardo
author Flego, Silvana
author_facet Flego, Silvana
Plastino, Ángel Luis
Plastino, Ángel Ricardo
author_role author
author2 Plastino, Ángel Luis
Plastino, Ángel Ricardo
author2_role author
author
dc.subject.none.fl_str_mv Física
Information theory
Fisher’s Information Measure
Legendre Transform
Quartic Anharmonic Oscillator
topic Física
Information theory
Fisher’s Information Measure
Legendre Transform
Quartic Anharmonic Oscillator
dc.description.none.fl_txt_mv It is well known that a suggestive connection links Schrödinger’s equation (SE) and the information-opti- mizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the exis-tence of a Legendre transform structure underlying the SE. Such a structure leads to a first order partial dif-ferential equation (PDE) for the SE’s eigenvalues from which a complete solution for them can be obtained. We test this theory with regards to anharmonic oscillators (AHO). AHO pose a long-standing problem and received intense attention motivated by problems in quantum field theory and molecular physics. By appeal to the Cramer Rao bound we are able to Fisher-infer the energy eigenvalues without explicitly solving Schrödinger’s equation. Remarkably enough, and in contrast with standard variational approaches, our pre-sent procedure does not involve free fitting parameters.
Instituto de Física La Plata
Facultad de Ingeniería
Centro Regional de Estudios Genómicos
description It is well known that a suggestive connection links Schrödinger’s equation (SE) and the information-opti- mizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the exis-tence of a Legendre transform structure underlying the SE. Such a structure leads to a first order partial dif-ferential equation (PDE) for the SE’s eigenvalues from which a complete solution for them can be obtained. We test this theory with regards to anharmonic oscillators (AHO). AHO pose a long-standing problem and received intense attention motivated by problems in quantum field theory and molecular physics. By appeal to the Cramer Rao bound we are able to Fisher-infer the energy eigenvalues without explicitly solving Schrödinger’s equation. Remarkably enough, and in contrast with standard variational approaches, our pre-sent procedure does not involve free fitting parameters.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/119318
url http://sedici.unlp.edu.ar/handle/10915/119318
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2153-1196
info:eu-repo/semantics/altIdentifier/issn/2153-120X
info:eu-repo/semantics/altIdentifier/doi/10.4236/jmp.2011.211171
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1390-1396
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260497861181440
score 13.13397