Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues
- Autores
- Flego, Silvana; Plastino, Ángel Luis; Plastino, Ángel Ricardo
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is well known that a suggestive connection links Schrödinger’s equation (SE) and the information-opti- mizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the exis-tence of a Legendre transform structure underlying the SE. Such a structure leads to a first order partial dif-ferential equation (PDE) for the SE’s eigenvalues from which a complete solution for them can be obtained. We test this theory with regards to anharmonic oscillators (AHO). AHO pose a long-standing problem and received intense attention motivated by problems in quantum field theory and molecular physics. By appeal to the Cramer Rao bound we are able to Fisher-infer the energy eigenvalues without explicitly solving Schrödinger’s equation. Remarkably enough, and in contrast with standard variational approaches, our pre-sent procedure does not involve free fitting parameters.
Instituto de Física La Plata
Facultad de Ingeniería
Centro Regional de Estudios Genómicos - Materia
-
Física
Information theory
Fisher’s Information Measure
Legendre Transform
Quartic Anharmonic Oscillator - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/119318
Ver los metadatos del registro completo
id |
SEDICI_a1428d8aa4601862f46c966b062f5762 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/119318 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Direct Fisher Inference of the Quartic Oscillator’s EigenvaluesFlego, SilvanaPlastino, Ángel LuisPlastino, Ángel RicardoFísicaInformation theoryFisher’s Information MeasureLegendre TransformQuartic Anharmonic OscillatorIt is well known that a suggestive connection links Schrödinger’s equation (SE) and the information-opti- mizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the exis-tence of a Legendre transform structure underlying the SE. Such a structure leads to a first order partial dif-ferential equation (PDE) for the SE’s eigenvalues from which a complete solution for them can be obtained. We test this theory with regards to anharmonic oscillators (AHO). AHO pose a long-standing problem and received intense attention motivated by problems in quantum field theory and molecular physics. By appeal to the Cramer Rao bound we are able to Fisher-infer the energy eigenvalues without explicitly solving Schrödinger’s equation. Remarkably enough, and in contrast with standard variational approaches, our pre-sent procedure does not involve free fitting parameters.Instituto de Física La PlataFacultad de IngenieríaCentro Regional de Estudios Genómicos2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1390-1396http://sedici.unlp.edu.ar/handle/10915/119318enginfo:eu-repo/semantics/altIdentifier/issn/2153-1196info:eu-repo/semantics/altIdentifier/issn/2153-120Xinfo:eu-repo/semantics/altIdentifier/doi/10.4236/jmp.2011.211171info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:00:16Zoai:sedici.unlp.edu.ar:10915/119318Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:00:16.927SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues |
title |
Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues |
spellingShingle |
Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues Flego, Silvana Física Information theory Fisher’s Information Measure Legendre Transform Quartic Anharmonic Oscillator |
title_short |
Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues |
title_full |
Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues |
title_fullStr |
Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues |
title_full_unstemmed |
Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues |
title_sort |
Direct Fisher Inference of the Quartic Oscillator’s Eigenvalues |
dc.creator.none.fl_str_mv |
Flego, Silvana Plastino, Ángel Luis Plastino, Ángel Ricardo |
author |
Flego, Silvana |
author_facet |
Flego, Silvana Plastino, Ángel Luis Plastino, Ángel Ricardo |
author_role |
author |
author2 |
Plastino, Ángel Luis Plastino, Ángel Ricardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Física Information theory Fisher’s Information Measure Legendre Transform Quartic Anharmonic Oscillator |
topic |
Física Information theory Fisher’s Information Measure Legendre Transform Quartic Anharmonic Oscillator |
dc.description.none.fl_txt_mv |
It is well known that a suggestive connection links Schrödinger’s equation (SE) and the information-opti- mizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the exis-tence of a Legendre transform structure underlying the SE. Such a structure leads to a first order partial dif-ferential equation (PDE) for the SE’s eigenvalues from which a complete solution for them can be obtained. We test this theory with regards to anharmonic oscillators (AHO). AHO pose a long-standing problem and received intense attention motivated by problems in quantum field theory and molecular physics. By appeal to the Cramer Rao bound we are able to Fisher-infer the energy eigenvalues without explicitly solving Schrödinger’s equation. Remarkably enough, and in contrast with standard variational approaches, our pre-sent procedure does not involve free fitting parameters. Instituto de Física La Plata Facultad de Ingeniería Centro Regional de Estudios Genómicos |
description |
It is well known that a suggestive connection links Schrödinger’s equation (SE) and the information-opti- mizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the exis-tence of a Legendre transform structure underlying the SE. Such a structure leads to a first order partial dif-ferential equation (PDE) for the SE’s eigenvalues from which a complete solution for them can be obtained. We test this theory with regards to anharmonic oscillators (AHO). AHO pose a long-standing problem and received intense attention motivated by problems in quantum field theory and molecular physics. By appeal to the Cramer Rao bound we are able to Fisher-infer the energy eigenvalues without explicitly solving Schrödinger’s equation. Remarkably enough, and in contrast with standard variational approaches, our pre-sent procedure does not involve free fitting parameters. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/119318 |
url |
http://sedici.unlp.edu.ar/handle/10915/119318 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2153-1196 info:eu-repo/semantics/altIdentifier/issn/2153-120X info:eu-repo/semantics/altIdentifier/doi/10.4236/jmp.2011.211171 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1390-1396 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260497861181440 |
score |
13.13397 |