Physical implications of Fisher-information's scaling symmetry

Autores
Flego, Silvana; Plastino, Ángel Luis; Plastino, Ángel Ricardo
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the scaling properties of Fisher's information measure (FIM) and show that from these one can straightforwardly deduce significant quantum-mechanical results. Specifically, we investigate the scaling properties of Fisher's measure I and encounter that, from the concomitant operating rules, several interesting, albeit known, results can be derived. This entails that such results can be regarded as pre-configured by the conjunction of scaling and information theory. The central notion to be arrived at is that scaling entails that I must obey a certain partial differential equation (PDE). These PDE-solutions have properties that enable the application of a Legendre-transform (LT). The conjunction PDE+LT leads one to obtain several quantum results without recourse to the Schrödinger's equation.
Facultad de Ingeniería
Instituto de Física La Plata
Materia
Física
Fisher Information
Legendre structure
reciprocity relations
scaling transform
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84298

id SEDICI_2c402d0c8578151a84aefdca989ace75
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84298
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Physical implications of Fisher-information's scaling symmetryFlego, SilvanaPlastino, Ángel LuisPlastino, Ángel RicardoFísicaFisher InformationLegendre structurereciprocity relationsscaling transformWe study the scaling properties of Fisher's information measure (FIM) and show that from these one can straightforwardly deduce significant quantum-mechanical results. Specifically, we investigate the scaling properties of Fisher's measure I and encounter that, from the concomitant operating rules, several interesting, albeit known, results can be derived. This entails that such results can be regarded as pre-configured by the conjunction of scaling and information theory. The central notion to be arrived at is that scaling entails that I must obey a certain partial differential equation (PDE). These PDE-solutions have properties that enable the application of a Legendre-transform (LT). The conjunction PDE+LT leads one to obtain several quantum results without recourse to the Schrödinger's equation.Facultad de IngenieríaInstituto de Física La Plata2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf390-397http://sedici.unlp.edu.ar/handle/10915/84298enginfo:eu-repo/semantics/altIdentifier/issn/1895-1082info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-012-0007-1info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:20Zoai:sedici.unlp.edu.ar:10915/84298Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:20.479SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Physical implications of Fisher-information's scaling symmetry
title Physical implications of Fisher-information's scaling symmetry
spellingShingle Physical implications of Fisher-information's scaling symmetry
Flego, Silvana
Física
Fisher Information
Legendre structure
reciprocity relations
scaling transform
title_short Physical implications of Fisher-information's scaling symmetry
title_full Physical implications of Fisher-information's scaling symmetry
title_fullStr Physical implications of Fisher-information's scaling symmetry
title_full_unstemmed Physical implications of Fisher-information's scaling symmetry
title_sort Physical implications of Fisher-information's scaling symmetry
dc.creator.none.fl_str_mv Flego, Silvana
Plastino, Ángel Luis
Plastino, Ángel Ricardo
author Flego, Silvana
author_facet Flego, Silvana
Plastino, Ángel Luis
Plastino, Ángel Ricardo
author_role author
author2 Plastino, Ángel Luis
Plastino, Ángel Ricardo
author2_role author
author
dc.subject.none.fl_str_mv Física
Fisher Information
Legendre structure
reciprocity relations
scaling transform
topic Física
Fisher Information
Legendre structure
reciprocity relations
scaling transform
dc.description.none.fl_txt_mv We study the scaling properties of Fisher's information measure (FIM) and show that from these one can straightforwardly deduce significant quantum-mechanical results. Specifically, we investigate the scaling properties of Fisher's measure I and encounter that, from the concomitant operating rules, several interesting, albeit known, results can be derived. This entails that such results can be regarded as pre-configured by the conjunction of scaling and information theory. The central notion to be arrived at is that scaling entails that I must obey a certain partial differential equation (PDE). These PDE-solutions have properties that enable the application of a Legendre-transform (LT). The conjunction PDE+LT leads one to obtain several quantum results without recourse to the Schrödinger's equation.
Facultad de Ingeniería
Instituto de Física La Plata
description We study the scaling properties of Fisher's information measure (FIM) and show that from these one can straightforwardly deduce significant quantum-mechanical results. Specifically, we investigate the scaling properties of Fisher's measure I and encounter that, from the concomitant operating rules, several interesting, albeit known, results can be derived. This entails that such results can be regarded as pre-configured by the conjunction of scaling and information theory. The central notion to be arrived at is that scaling entails that I must obey a certain partial differential equation (PDE). These PDE-solutions have properties that enable the application of a Legendre-transform (LT). The conjunction PDE+LT leads one to obtain several quantum results without recourse to the Schrödinger's equation.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84298
url http://sedici.unlp.edu.ar/handle/10915/84298
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1895-1082
info:eu-repo/semantics/altIdentifier/doi/10.2478/s11534-012-0007-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
390-397
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260359060127744
score 13.13397