Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator
- Autores
- Fernández, Francisco Marcelo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper illustrates the application of group theory to a quantum-mechanical three-dimensional quartic anharmonic oscillator with Oh symmetry. It is shown that group theory predicts the degeneracy of the energy levels and facilitates the application of perturbation theory and the Rayleigh-Ritz variational method as well as the interpretation of the results in terms of the symmetry of the solutions. We show how to obtain suitable symmetry-adapted basis sets.
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
ANHARMONIC OSCILLATOR
GROUP THEORY
OH POINT GROUP
PERTURBATION THEORY
SYMMETRY-ADAPTED BASIS SET
VARIATIONAL METHOD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/48728
Ver los metadatos del registro completo
id |
CONICETDig_3cff4f13c7348267e4c1ac1a2710c308 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/48728 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillatorFernández, Francisco MarceloANHARMONIC OSCILLATORGROUP THEORYOH POINT GROUPPERTURBATION THEORYSYMMETRY-ADAPTED BASIS SETVARIATIONAL METHODhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1This paper illustrates the application of group theory to a quantum-mechanical three-dimensional quartic anharmonic oscillator with Oh symmetry. It is shown that group theory predicts the degeneracy of the energy levels and facilitates the application of perturbation theory and the Rayleigh-Ritz variational method as well as the interpretation of the results in terms of the symmetry of the solutions. We show how to obtain suitable symmetry-adapted basis sets.Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaAcademic Press Inc Elsevier Science2015-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48728Fernández, Francisco Marcelo; Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator; Academic Press Inc Elsevier Science; Annals of Physics (New York); 356; 5-2015; 149-1570003-4916CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2015.02.029info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003491615000883info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1501.00975info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:26Zoai:ri.conicet.gov.ar:11336/48728instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:26.728CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator |
title |
Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator |
spellingShingle |
Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator Fernández, Francisco Marcelo ANHARMONIC OSCILLATOR GROUP THEORY OH POINT GROUP PERTURBATION THEORY SYMMETRY-ADAPTED BASIS SET VARIATIONAL METHOD |
title_short |
Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator |
title_full |
Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator |
title_fullStr |
Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator |
title_full_unstemmed |
Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator |
title_sort |
Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator |
dc.creator.none.fl_str_mv |
Fernández, Francisco Marcelo |
author |
Fernández, Francisco Marcelo |
author_facet |
Fernández, Francisco Marcelo |
author_role |
author |
dc.subject.none.fl_str_mv |
ANHARMONIC OSCILLATOR GROUP THEORY OH POINT GROUP PERTURBATION THEORY SYMMETRY-ADAPTED BASIS SET VARIATIONAL METHOD |
topic |
ANHARMONIC OSCILLATOR GROUP THEORY OH POINT GROUP PERTURBATION THEORY SYMMETRY-ADAPTED BASIS SET VARIATIONAL METHOD |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper illustrates the application of group theory to a quantum-mechanical three-dimensional quartic anharmonic oscillator with Oh symmetry. It is shown that group theory predicts the degeneracy of the energy levels and facilitates the application of perturbation theory and the Rayleigh-Ritz variational method as well as the interpretation of the results in terms of the symmetry of the solutions. We show how to obtain suitable symmetry-adapted basis sets. Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
description |
This paper illustrates the application of group theory to a quantum-mechanical three-dimensional quartic anharmonic oscillator with Oh symmetry. It is shown that group theory predicts the degeneracy of the energy levels and facilitates the application of perturbation theory and the Rayleigh-Ritz variational method as well as the interpretation of the results in terms of the symmetry of the solutions. We show how to obtain suitable symmetry-adapted basis sets. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/48728 Fernández, Francisco Marcelo; Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator; Academic Press Inc Elsevier Science; Annals of Physics (New York); 356; 5-2015; 149-157 0003-4916 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/48728 |
identifier_str_mv |
Fernández, Francisco Marcelo; Group theoretical analysis of a quantum-mechanical three-dimensional quartic anharmonic oscillator; Academic Press Inc Elsevier Science; Annals of Physics (New York); 356; 5-2015; 149-157 0003-4916 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aop.2015.02.029 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0003491615000883 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1501.00975 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269343871664128 |
score |
13.13397 |