Multiagent team formation performed by operant learning: an animat approach
- Autores
- Gutnisky, D. A.; Zelmann, R.; Zanutto, Bonifacio Silvano
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An animat approach to dynamic team formation in a group of distributed robots is studied. The goal is that robots learn to align with the others in order to form a row or a column without having communication among them, just local sensing and a reinforcement signal. The action of the robot is controlled by a biologically plausible neural network model of operant learning. The remarkable performance achieved by the proposed model allows the building of new artificial intelligence agents based on neurobiology, psychology and ethology research.
Fil: Gutnisky, D. A..
Fil: Zelmann, R..
Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina - Materia
-
Operant Behavior
Multiagent System
Neural Networks
Reinforcement Learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18532
Ver los metadatos del registro completo
id |
CONICETDig_9945fa5ab39bbec0def244001a4ae4d4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18532 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiagent team formation performed by operant learning: an animat approachGutnisky, D. A.Zelmann, R.Zanutto, Bonifacio SilvanoOperant BehaviorMultiagent SystemNeural NetworksReinforcement Learninghttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3https://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2An animat approach to dynamic team formation in a group of distributed robots is studied. The goal is that robots learn to align with the others in order to form a row or a column without having communication among them, just local sensing and a reinforcement signal. The action of the robot is controlled by a biologically plausible neural network model of operant learning. The remarkable performance achieved by the proposed model allows the building of new artificial intelligence agents based on neurobiology, psychology and ethology research.Fil: Gutnisky, D. A..Fil: Zelmann, R..Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaInstitute Of Electrical And Electronics Engineers2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18532Gutnisky, D. A.; Zelmann, R.; Zanutto, Bonifacio Silvano; Multiagent team formation performed by operant learning: an animat approach; Institute Of Electrical And Electronics Engineers; Proceedings of International Joint Conference on Neural Networks; 2006; 12-2006; 2944-29502161-43932161-4407CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/ 10.1109/IJCNN.2006.247228info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/1716498/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:21:25Zoai:ri.conicet.gov.ar:11336/18532instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:21:25.674CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiagent team formation performed by operant learning: an animat approach |
title |
Multiagent team formation performed by operant learning: an animat approach |
spellingShingle |
Multiagent team formation performed by operant learning: an animat approach Gutnisky, D. A. Operant Behavior Multiagent System Neural Networks Reinforcement Learning |
title_short |
Multiagent team formation performed by operant learning: an animat approach |
title_full |
Multiagent team formation performed by operant learning: an animat approach |
title_fullStr |
Multiagent team formation performed by operant learning: an animat approach |
title_full_unstemmed |
Multiagent team formation performed by operant learning: an animat approach |
title_sort |
Multiagent team formation performed by operant learning: an animat approach |
dc.creator.none.fl_str_mv |
Gutnisky, D. A. Zelmann, R. Zanutto, Bonifacio Silvano |
author |
Gutnisky, D. A. |
author_facet |
Gutnisky, D. A. Zelmann, R. Zanutto, Bonifacio Silvano |
author_role |
author |
author2 |
Zelmann, R. Zanutto, Bonifacio Silvano |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Operant Behavior Multiagent System Neural Networks Reinforcement Learning |
topic |
Operant Behavior Multiagent System Neural Networks Reinforcement Learning |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
An animat approach to dynamic team formation in a group of distributed robots is studied. The goal is that robots learn to align with the others in order to form a row or a column without having communication among them, just local sensing and a reinforcement signal. The action of the robot is controlled by a biologically plausible neural network model of operant learning. The remarkable performance achieved by the proposed model allows the building of new artificial intelligence agents based on neurobiology, psychology and ethology research. Fil: Gutnisky, D. A.. Fil: Zelmann, R.. Fil: Zanutto, Bonifacio Silvano. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina |
description |
An animat approach to dynamic team formation in a group of distributed robots is studied. The goal is that robots learn to align with the others in order to form a row or a column without having communication among them, just local sensing and a reinforcement signal. The action of the robot is controlled by a biologically plausible neural network model of operant learning. The remarkable performance achieved by the proposed model allows the building of new artificial intelligence agents based on neurobiology, psychology and ethology research. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18532 Gutnisky, D. A.; Zelmann, R.; Zanutto, Bonifacio Silvano; Multiagent team formation performed by operant learning: an animat approach; Institute Of Electrical And Electronics Engineers; Proceedings of International Joint Conference on Neural Networks; 2006; 12-2006; 2944-2950 2161-4393 2161-4407 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18532 |
identifier_str_mv |
Gutnisky, D. A.; Zelmann, R.; Zanutto, Bonifacio Silvano; Multiagent team formation performed by operant learning: an animat approach; Institute Of Electrical And Electronics Engineers; Proceedings of International Joint Conference on Neural Networks; 2006; 12-2006; 2944-2950 2161-4393 2161-4407 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ 10.1109/IJCNN.2006.247228 info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/1716498/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute Of Electrical And Electronics Engineers |
publisher.none.fl_str_mv |
Institute Of Electrical And Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082602253942784 |
score |
13.124843 |